D. March because it is just below the 1 million marker on the graph and it is the only one that low.
Answer:
Explanation:
First of all we shall find the velocity at equilibrium point of mass 1.2 kg .
It will be ω A , where ω is angular frequency and A is amplitude .
ω = √ ( k / m )
= √ (170 / 1.2 )
= 11.90 rad /s
amplitude A = .045 m
velocity at middle point ( maximum velocity ) = 11.9 x .045 m /s
= .5355 m /s
At middle point , no force acts so we can apply law of conservation of momentum
m₁ v₁ = ( m₁ + m₂ ) v
1.2 x .5355 = ( 1.2 + .48 ) x v
v = .3825 m /s
= 38.25 cm /s
Let new amplitude be A₁ .
1/2 m v² = 1/2 k A₁²
( 1.2 + .48 ) x v² = 170 x A₁²
( 1.2 + .48 ) x .3825² = 170 x A₁²
A₁ = .0379 m
New amplitude is .0379 m
Question: What is the frequency of a wave that has a wave speed of 120 m/s and a wavelength of 0.40 m?
Answer: The equation that relates frequency of a wave to a waves speed and wavelength is Speed of Wave= Frequency X Wavelength. Since you are given speed and wavelength, you plug those two known numbers into the equation, 120= Frequency X 0.40. You then divide 120 by .4 to get your frequency of 300.
Explanation: this might help for
Answer:
q₃ = -4.81 nC
Explanation:
We can use the Gauss Law here:
∅ = q/∈₀
where,
∅ = Net Flux = - 216 N.m²/C
q = total charge enclosed inside sphere = ?
∈₀ = permittivity of free space = 8.85 x 10⁻¹² C/N.m²
Therefore,
- 216 N.m²/C = q / 8.85 x 10⁻¹² C²/N.m²
q = (-216 N.m²/C)(8.85 x 10⁻¹² C²/N.m²)
q = - 1.91 nC
So, the total charge will be sum of all three charges:
q = q₁ + q₂ + q₃
- 1.91 nC = 1.74 nC + 1.16 nC + q₃
q₃ = - 1.91 nC - 1.74 nC - 1.16 nC
<u>q₃ = -4.81 nC</u>
Answer:
Explanation:
according to Newton First Law of Motion (Law of Inertia); An object at rest will stay at rest, forever, as long as nothing pushes or pulls on it. An object in motion will stay in motion, traveling in a straight line, forever, until something pushes or pulls on it.
the marble will move in a straight line