Answer: Gravity is the force that keeps planets in orbit around the Sun. Gravity alone holds us to Earth's surface.
Planets have measurable properties, such as size, mass, density, and composition. A planet's size and mass determines its gravitational pull.
A planet's mass and size determines how strong its gravitational pull is.
Models can help us experiment with the motions of objects in space, which are determined by the gravitational pull between them.
Explanation:
Answer:
(a) convex mirror
(b) virtual and magnified
(c) 23.3 cm
Explanation:
The having mirror is convex mirror.
distance of object, u = - 20 cm
magnification, m = 1.4
(a) As the image is magnified and virtual , so the mirror is convex in nature.
(b) The image is virtual and magnified.
(c) Let the distance of image is v.
Use the formula of magnification.
Use the mirror equation, let the focal length is f.
Radius of curvature, R = 2 f = 2 x 11.67 = 23.3 cm
Answer: Speed = 4 m/s
Explanation:
The parameters given are
Mass M = 60 kg
Height h = 0.8 m
Acceleration due to gravity g= 10 m/s2
Before the man jumps, he will be experiencing potential energy at the top of the table.
P.E = mgh
Substitute all the parameters into the formula
P.E = 60 × 9.8 × 0.8
P.E = 470.4 J
As he jumped from the table and hit the ground, the whole P.E will be converted to kinetic energy according to conservative of energy.
When hitting the ground,
K.E = P.E
Where K.E = 1/2mv^2
Substitute m and 470.4 into the formula
470.4 = 1/2 × 60 × V^2
V^2 = 470.4/30
V^2 = 15.68
V = square root (15.68)
V = 3.959 m/s
Therefore, the speed of the man when hitting the ground is approximately 4 m/s
Answer:
6.07 N
Explanation:
Given that,
Force, F = 35 N
It makes 10 degree angle with the positive x-axis.
We need to find the magnitude of the vertical component of the force. It can be given by :
So, the magnitude of the vertical component of the force is 6.07 N.