Answer:
Arsenic.
Explanation:
Hello there!
In this case, since insecticides are substances that act as poisons to get rid of insects in order to prevent their presence and/or reproduction in houses, companies, crops and others, a substance that has been widely used is the metalloid arsenic due to its direct affection of the insect's body (movement, performance, cellular functions).
In addition, high levels of arsenic in food could cause arsenic poisoning in humans as well, that is why such practice must be properly performed and by using the correct security protocol.
Best regards!
Answer:
Answer E.
For a collision to be completely elastic, there must be NO LOSS in kinetic energy.
We can go through each answer choice:
A. Since the ball rebounds at half the initial speed, there is a loss in kinetic energy. This is NOT an elastic collision.
B. A collision involving sticking is an example of a perfectly INELASTIC collision. This is NOT an elastic collision.
C. A reduced speed indicates that there is a loss of kinetic energy. This is NOT elastic.
D. The balls traveling at half the speed after the collision indicates a loss of kinetic energy, making this collision NOT elastic.
E. This collision indicates an exchange of velocities, characteristic of an elastic collision. We can prove this:
Let:
m = mass of each ball
v = velocity
We have the initial kinetic energy as:
KE = \frac{1}{2}mv^2 + 0 = \frac{1}{2}mv^2KE=21mv2+0=21mv2
And the final as:
KE = 0 + \frac{1}{2}mv^2 = \frac{1}{2}mv^2KE=0+21mv2=21mv2
2H2(g) + O2(g) → 2H2O(1) 0 260 g 0.2068 0.180 g 2008
When 45.0 g of CH4 reacts with excess O2, the actual yield of CO2 is 118 g. What is the percent yield? CHA(g) + 2O2(g) - CO2(g) + 2H2O(g) 73.6% 67.9% 95.2% 86.4%
For the reaction: 2503(g) + 790 kcal - 25(s) + 3O2(g), how many kcal are needed to form 1.5 moles O2(g)? 790 kcal 395 kcal 2370 kcal 411 kcal
When 3 moles of Ny are mixed with 5 moles of H2 the limiting reactant is N2(g) + 3H2(g) - 2NH3(g) H2 NH3 ОООО H20 O N₂
Answer:
50 g of K₂CO₃ are needed
Explanation:
How many grams of K₂CO₃ are needed to make 500 g of a 10% m/m solution?
We analyse data:
500 g is the mass of the solution we want
10% m/m is a sort of concentration, in this case means that 10 g of solute (K₂CO₃) are contained in 100 g of solution
Therefore we can solve this, by a rule of three:
In 100 g of solution we have 10 g of K₂CO₃
In 500 g of solution we may have, (500 . 10) / 100 = 50 g of K₂CO₃
Answer : The value of equilibrium constant for this reaction at 262.0 K is 
Explanation :
As we know that,

where,
= standard Gibbs free energy = ?
= standard enthalpy = -45.6 kJ = -45600 J
= standard entropy = -125.7 J/K
T = temperature of reaction = 262.0 K
Now put all the given values in the above formula, we get:


The relation between the equilibrium constant and standard Gibbs free energy is:

where,
= standard Gibbs free energy = -12666.6 J
R = gas constant = 8.314 J/K.mol
T = temperature = 262.0 K
K = equilibrium constant = ?
Now put all the given values in the above formula, we get:


Therefore, the value of equilibrium constant for this reaction at 262.0 K is 