Answer:
<h3>The answer is 9.0 kg/L</h3>
Explanation:
The density of a substance can be found by using the formula

From the question
mass = 1.8 kg
volume = 0.2 L
We have

We have the final answer as
<h3>9.0 kg/L</h3>
Hope this helps you
Answer:
The force of gravity acting on the car is <u>9800 N vertically downward.</u>
Explanation:
Given:
Mass of the car given is 1000 kg.
We know that the force of gravity is the force applied by the center of Earth on any body. The force of gravity is also called the weight of the body and always act towards the center of the Earth.
From Newton's second law, we know that the force acting on a body is equal to its mass and acceleration.
Here, the acceleration acting on the car is due to gravity and thus has a constant value of 9.8 m/s² on the surface of Earth.
Therefore, the force of gravity acting on the car is given using the Newton's second law as:
Force of gravity = Mass of car
Acceleration due to gravity.
Force of gravity = (1000 kg)
(9.8 m/s²)
Force of gravity = 9800 N [1 kg.m/s² = 1 N]
Therefore, the force of gravity acting on the car is 9800 N vertically downward.
Answer:
Solar power take less energy compare to other and its charge by sun According to me solar energy is best way to save energy in future
Answer:
The specific rotation of D is 11.60° mL/g dm
Explanation:
Given that:
The path length (l) = 1 dm
Observed rotation (∝) = + 0.27°
Molarity = 0.175 M
Molar mass = 133.0 g/mol
Concentration in (g/mL) = 0.175 mol/L × 133.0 g/mol
Concentration in (g/mL) = 23.275 g/L
Since 1 L = 1000 mL
Concentration in (g/mL) = 0.023275 g/mL
The specific rotation [∝] = ∝/(1×c)
= 0.27°/( 1 dm × 0.023275 g/mL
)
= 11.60° mL/g dm
Thus, the specific rotation of D is 11.60° mL/g dm
Answer:
nahhhhhhhhhhhhhhhhhhhhhhh xD
have a good day :)
Explanation: