1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
d1i1m1o1n [39]
3 years ago
10

True or False:

Physics
2 answers:
sattari [20]3 years ago
4 0

Answer:true

Explanation:

because rolling objects have less area in touch with the surface

Anika [276]3 years ago
3 0
Hi, I think the answer is False? I’m not fully sure bc I’m not considering air resistants. I’m sorry if this isn’t correct.
You might be interested in
A 0.150 kg ball on the end of a 1.10 m long cord (negligible mass)is swung in a vertical circle..
Aneli [31]
<span> For any body to move in a circle it requires the centripetal force (mv^2)/r. In this case a ball is moving in a vertical circle swung by a mass less cord. At the top of its arc if we draw its free body diagram and equate the forces in radial direction to the centripetal force we get it as T +mg =(mv^2)/r T is tension in cord m is mass of ball r is length of cord (radius of the vertical circle) To get the minimum value of velocity the LHS should be minimum. This is possible when T = 0. So minimum speed of ball v at top =sqrtr(rg)=sqrt(1.1*9.81) = 3.285 m/s In the second case the speed of ball at top = (2*3.285) =6.57 m/s Let us take the lowest point of the vertical circle as reference for potential energy and apllying the conservation of energy equation between top & bottom we get velocity at bottom as 9.3m/s. Now by drawing the free body diagram of the ball at the bottom and equating the net radial force to the centripetal force T-mg=(mv^2)/r We get tension in cord T=13.27 N</span>
3 0
3 years ago
Read 2 more answers
What was the first major action Roosevelt took AFTER he was inaugurated (sworn in as president)
Marysya12 [62]

Answer:

the second one i guess????

Explanation:

7 0
3 years ago
Read 2 more answers
Two Earth satellites, A and B, each of mass m, are to be launched into circular orbits about Earth's center. Satellite A is to o
Pachacha [2.7K]

(a) 0.448

The gravitational potential energy of a satellite in orbit is given by:

U=-\frac{GMm}{r}

where

G is the gravitational constant

M is the Earth's mass

m is the satellite's mass

r is the distance of the satellite from the Earth's centre, which is sum of the Earth's radius (R) and the altitude of the satellite (h):

r = R + h

We can therefore write the ratio between the potentially energy of satellite B to that of satellite A as

\frac{U_B}{U_A}=\frac{-\frac{GMm}{R+h_B}}{-\frac{GMm}{R+h_A}}=\frac{R+h_A}{R+h_B}

and so, substituting:

R=6370 km\\h_A = 5970 km\\h_B = 21200 km

We find

\frac{U_B}{U_A}=\frac{6370 km+5970 km}{6370 km+21200 km}=0.448

(b) 0.448

The kinetic energy of a satellite in orbit around the Earth is given by

K=\frac{1}{2}\frac{GMm}{r}

So, the ratio between the two kinetic energies is

\frac{K_B}{K_A}=\frac{\frac{1}{2}\frac{GMm}{R+h_B}}{\frac{1}{2}\frac{GMm}{R+h_A}}=\frac{R+h_A}{R+h_B}

Which is exactly identical to the ratio of the potential energies. Therefore, this ratio is also equal to 0.448.

(c) B

The total energy of a satellite is given by the sum of the potential energy and the kinetic energy:

E=U+K=-\frac{GMm}{R+h}+\frac{1}{2}\frac{GMm}{R+h}=-\frac{1}{2}\frac{GMm}{R+h}

For satellite A, we have

E_A=-\frac{1}{2}\frac{GMm}{R+h_A}=-\frac{1}{2}\frac{(6.67\cdot 10^{-11})(5.98\cdot 10^{24}kg)(28.8 kg)}{6.37\cdot 10^6 m+5.97\cdot 10^6 m}=-4.65\cdot 10^8 J

For satellite B, we have

E_B=-\frac{1}{2}\frac{GMm}{R+h_B}=-\frac{1}{2}\frac{(6.67\cdot 10^{-11})(5.98\cdot 10^{24}kg)(28.8 kg)}{6.37\cdot 10^6 m+21.2\cdot 10^6 m}=-2.08\cdot 10^8 J

So, satellite B has the greater total energy (since the energy is negative).

(d) -2.57\cdot 10^8 J

The difference between the energy of the two satellites is:

E_B-E_A=-2.08\cdot 10^8 J-(-4.65\cdot 10^8 J)=-2.57\cdot 10^8 J

4 0
3 years ago
Determine the vector perpendicular to the plane of A= 31+ 6j - 2k and B=4i-j +3k
Sliva [168]

The vector perpendicular to the plane of A = 3i+ 6j - 2k and B = 4i-j +3k is 16 i - 17 j - 27 k

Let r be the vector perpendicular to A and B,

r = A * B

A = 3i + 6j - 2k

B = 4i - j + 3k

a1 = 3

a2 = 6

a3 = - 2

b1 = 4

b2 = - 1

b3 = 3

a * b = ( a2 b3 - b2 a3 ) i + ( a3 b1 - b3 a1 ) j + ( a1 b2 - b1 a2 ) k

a * b = [ ( 6 * 3 ) - ( - 1 * - 2 ) ] i + [ ( - 2 * 4 ) - ( 3 * 3 ) ] j + [ ( 3 * - 1 ) - ( 4 * 6 ) ] k

a * b = 16 i - 17 j - 27 k

The perpendicular vector, r = 16 i - 17 j - 27 k

Therefore, the vector perpendicular to the plane of A = 3i + 6j - 2k and B = 4i - j + 3k is 16 i - 17 j - 27 k

To know more about perpendicular vectors

brainly.com/question/14384780

#SPJ1

5 0
2 years ago
Two students, Student X and Student Y, stand on a long skateboard that is at rest on a flat, horizontal surface, as shown. In or
OleMash [197]

Answer:

the answer is B.

Explanation:

The claim is correct because Student Y can apply a force that is greater in magnitude than the frictional forces that are exerted on the student-student-skateboard system

6 0
4 years ago
Read 2 more answers
Other questions:
  • Use the following terms in the same sentence: proton, neutron, and isotope.
    6·1 answer
  • 12. What does positive and negative acceleration indicate?
    6·1 answer
  • An infinite line charge of linear density λ = 0.30 μC/m lies along the z axis and a point charge q = 6.0 µC lies on the y axis a
    6·2 answers
  • Why Venus is known as red planet?​
    13·2 answers
  • A 4.5 kg box slides down a 4.3-m-high frictionless hill, starting from rest, across a 2.0-m-wide horizontal surface, then hits a
    7·1 answer
  • The diagram below illustrates the law of reflection.
    15·1 answer
  • A turntable that spins at a constant 80.0 rpmrpm takes 3.50 ss to reach this angular speed after it is turned on. Find its angul
    15·1 answer
  • Which fundamental force causes some forms of radioactivity? A. Gravity B. Electromagnetic force C. Strong nuclear force D. Weak
    14·1 answer
  • A spacecraft travels at 1.5 X 108 m/s relative to Earth. A process onboard the
    8·1 answer
  • In this schematic, the total resistance is 50 ohms. 100 ohms. 1,000 ohms. 100 ohms 10,000 ohms
    13·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!