Hey there!
Seems like you're looking for the size and direction to the final velocity of the two cars. To find it, you must solve it like this.
0.4 kg(3 m/s) + 0.8kg(–2 m/s) = 1.2 kg m/s -1.6 kg m/s = –0.4 kg m/s
–0.4 kg m/s = 1.2 kg(v) = (–0.4 kg m/s)/(1.2 kg) = v = –0.33 m/s
So, the cars are traveling at -0.33 m/s in the direction of the second car.
Hope this helps
<em>Tobey</em>
Answer:
Explanation:
The power of each of the speakers is 0.535 W. At a distance d intensity of sound can be found by the following formula
Intensity of sound = Power / 4π d²
= .535 / 4 x 3.14 x (27.3/2)²
= 2.286 x 10⁻⁴ J m⁻² s⁻¹
Intensity of sound due to other source = 5.715 x 10⁻⁵J m⁻² s⁻¹
Total intensity = 2 x 2.286 x 10⁻⁴J m⁻² s⁻¹
= 4.57 x 10⁻⁴J m⁻² s⁻¹
b ) In this case, man is standing at distances 18.15 m and 9.15 m from the sources .
The total intensity of sound reaching him is as follows
0.535 / (4 π x18.15² ) + 0.535 / (4 π x9.15² )
= 1.293 x 10⁻⁴ + 5.087 x 10⁻⁴
= 6.38 x 10⁻⁴J m⁻² s⁻¹
Answer:
a) F = 2.66 10⁴ N, b) h = 1.55 m
Explanation:
For this fluid exercise we use that the pressure at the tap point is
Exterior
P₂ = P₀ = 1.01 105 Pa
inside
P₁ = P₀ + ρ g h
the liquid is water with a density of ρ=1000 km / m³
P₁ = 0.85 1.01 10⁵ + 1000 9.8 5
P₁ = 85850 + 49000
P₁ = 1.3485 10⁵ Pa
the net force is
ΔP = P₁- P₂
Δp = 1.3485 10⁵ - 1.01 10⁵
ΔP = 3.385 10⁴ Pa
Let's use the definition of pressure
P = Fe / A
F = P A
the area of a circle is
A = pi r² = [i d ^ 2/4
let's reduce the units to the SI system
d = 100 cm (1 m / 100 cm) = 1 m
F = 3.385 104 pi / 4 (1) ²
F = 2.66 10⁴ N
b) the height for which the pressures are in equilibrium is
P₁ = P₂
0.85 P₀ + ρ g h = P₀
h =
h =
h = 1.55 m
Answer:because each speaker has a large angle of of coverage (horizontal and vertical)
They place them apart to prevent their signals (sounds produced) from getting into each other's way as this may cause interference (which may be destructive.
Explanation: