Answer:
No 
Explanation:
No, his mass remains the same no matter where he is in the universe.
But then again the moon has less gravitational pull, therefore your weight and mass will be smaller in space and on the moon than on earth
I hope this was helpful! ;) 
 
        
             
        
        
        
Answer: It is an unsaturated solution
Explanation: This is because it has more solute than a normal solution.
 
        
             
        
        
        
Answer : The specific heat (J/g-K) of this substance is, 0.780 J/g.K
Explanation :
Molar heat capacity : It is defined as the amount of heat absorbed by one mole of a substance to raise its temperature by one degree Celsius.
1 mole of substance releases heat = 92.1 J/K
As we are given, molar mass of unknown substance is, 118 g/mol that means, the mass of 1 mole of substance is, 118 g.
As, 118 g of substance releases heat = 92.1 J/K
So, 1 g of substance releases heat = 
Thus, the specific heat (J/g-K) of this substance is, 0.780 J/g.K
 
        
             
        
        
        
Answer:
0.80m of KOH
Explanation:
Molality is an unit of concentration defined as the ratio between moles of solute and kg of solvent.
In the problem, the solute is KOH and solvent is water.
Moles of 36g KOH -Molar mass: 56.1g/mol- are:
36g KOH × (1mol / 56.1g) = <em>0.642 moles of KOH</em>
<em></em>
Now, as density of water is 1g/mL, mass of 800mL of water is:
800mL × (1g / mL) × (1kg / 1000g) = <em>0.800kg of water</em>
<em></em>
Thus, molality is:
0.642moles of KOH / 0.800kg = <em>0.80m of KOH</em>