Answer:
Hydrosulfuric acid will act as limiting reactant.
Explanation:
Given data:
Mass of iron(III) chloride = 3243.0 g
Mass of hydrosulfuric acid = 511.8 g
Limiting reactant = ?
Solution:
Chemical equation:
2FeCl₃ + 3H₂S → Fe₂S₃ + 6HCl
Number of moles of iron(III) chloride:
Number of moles = mass/molar mass
Number of moles = 3243.0 g/ 162.2 g/mol
Number of moles = 20 mol
Number of moles of hydrosulfuric acid:
Number of moles = mass/molar mass
Number of moles = 511.8 g/ 34.1 g/mol
Number of moles = 15 mol
Now we will compare the moles of both reactant with products
FeCl₃ : Fe₂S₃
2 : 1
20 : 1/2 ×20 = 10
FeCl₃ : HCl
2 : 6
20 : 6/2 ×20 = 60
H₂S : Fe₂S₃
3 : 1
15 : 1/3 ×15 = 5
H₂S : HCl
3 : 6
15 : 6/3 ×15 = 30
Hydrosulfuric acid producing less number of moles of product thus, it will act as limiting reactant.
1.
The balanced chemical reaction is:
N2 +3 I2 = 2NI3
We are given the amount of product formed.
This will be the starting point of our calculations.
3.58 g NI3 ( 1 mol NI3 / 394.71 g NI3 ) ( 3
mol I2 / 2 mol NI3 ) = 0.014 mol I2.
Thus, 0.014 mol of I2 is needed to form the
given amount of NI3.
<u>Answer:</u> The nuclear equation for the conversion of He-3 nuclide to He-4 nuclide is given above.
<u>Explanation:</u>
Nuclear reaction are defined as the reactions in which nucleus of an atom is involved.
Positron emission is defined as the emission process in which positron particle is emitted. In this process, a proton gets converted to neutron and an electron neutrino particle.

The chemical equation for the reaction of He-3 with a proton follows:

Hence, the nuclear equation for the conversion of He-3 nuclide to He-4 nuclide is given above.
Answer:
<h2>106.62 mL</h2>
Explanation:
The volume of a substance when given the density and mass can be found by using the formula

From the question
mass = 83.7 g
density = 0.785 g/mL
We have

We have the final answer as
<h3>106.62 mL</h3>
Hope this helps you
Wild or passionate ..........