Answer:
Molarity = moles ÷ liters
to get moles of NaBr divide grams of NaBr by its molar mass (mass of Na + mass of Bromine)
Na = 22.989769
Br = 79.904
molar mass of NaBr = 102.893769
6.6g ÷ 102.893769 = 0.064143826 moles of NaBr
0.064143826 moles ÷ 0.60 liters = 0.1069 molar concentration or 11 %
Answer 1) Option D : Discrete
Explanation : As in the example the scientist studies about the effects of growing human populations on the biodiversity which is found in a region, and where each region was selected had a different population density of humans from 1 to 10 million per 10 square miles. Then in each region the number of different species that can be found was recorded. So here the numerical data was collected for different regions. So, we can conclude it as discrete because when the variable takes on a countable number of values it is called as discrete.
Answer 2) Option D : The entertainment industry
Explanation : When people had enough time and money with them there was no need of creating the communications industry as it was a need not a luxurious thing. With the creation of Internet industry it is somewhat irrelevant. They had enough of time and money so building a labor industry seems to be a lame choice. So, the option of entertainment industry suits the best.
<span>If energy is released, the reaction is exothermic. If energy is absorbed, the reaction is endothermic. Since heat is being absorbed in this reaction (to break down H2O into H2 and O), the reaction is endothermic.</span>
yes .. . . . .. . . .. ....... . ..dlnv3r;'mw,c kc;oqc,
xkdnnd
<span>There are few main factors affecting the atomic radii, the outermost electrons and the protons in the nucleus and also the shielding of the internal electrons. I would speculate that the difference in radii is given by the electron clouds since the electrons difference in these two elements is in the d orbital and both has at least 1 electron in the 4s (this 4s electron is the outermost electron in all the transition metals of this period). The atomic radio will be mostly dependent of these 4s electrons than in the d electrons. Besides that, you can see that increasing the atomic number will increase the number of protons in the nucleus decreasing the ratio of the atoms along a period. The Cu is an exception and will accommodate one of the 4s electrons in the p orbital.
</span><span>Regarding the density you can find the density of Cu = 8.96g/cm3 and vanadium = 6.0g/cm3. This also correlates with the idea that if these two atoms have similar volume and one has more mass (more protons; density is the relationship between m/V), then a bigger mass for a similar volume will result in a bigger density.</span>