Answer:
![[base]=0.28M](https://tex.z-dn.net/?f=%5Bbase%5D%3D0.28M)
Explanation:
Hello,
In this case, by using the Henderson-Hasselbach equation one can compute the concentration of acetate, which acts as the base, as shown below:
![pH=pKa+log(\frac{[base]}{[acid]} )\\\\\frac{[base]}{[acid]}=10^{pH-pKa}\\\\\frac{[base]}{[acid]}=10^{4.9-4.76}\\\\\frac{[base]}{[acid]}=1.38\\\\](https://tex.z-dn.net/?f=pH%3DpKa%2Blog%28%5Cfrac%7B%5Bbase%5D%7D%7B%5Bacid%5D%7D%20%29%5C%5C%5C%5C%5Cfrac%7B%5Bbase%5D%7D%7B%5Bacid%5D%7D%3D10%5E%7BpH-pKa%7D%5C%5C%5C%5C%5Cfrac%7B%5Bbase%5D%7D%7B%5Bacid%5D%7D%3D10%5E%7B4.9-4.76%7D%5C%5C%5C%5C%5Cfrac%7B%5Bbase%5D%7D%7B%5Bacid%5D%7D%3D1.38%5C%5C%5C%5C)
![[base]=1.38[acid]=1.38*0.20M=0.28M](https://tex.z-dn.net/?f=%5Bbase%5D%3D1.38%5Bacid%5D%3D1.38%2A0.20M%3D0.28M)
Regards.
Answer:
Option B. 2096.1 K
Explanation:
Data obtained from the question include the following:
Enthalpy (H) = +1287 kJmol¯¹ = +1287000 Jmol¯¹
Entropy (S) = +614 JK¯¹mol¯¹
Temperature (T) =.?
Entropy is related to enthalphy and temperature by the following equation:
Change in entropy (ΔS) = change in enthalphy (ΔH) / Temperature (T)
ΔS = ΔH / T
With the above formula, we can obtain the temperature at which the reaction will be feasible as follow:
ΔS = ΔH / T
614 = 1287000/ T
Cross multiply
614 x T = 1287000
Divide both side by 614
T = 1287000/614
T = 2096.1 K
Therefore, the temperature at which the reaction will be feasible is 2096.1 K
<span>Answers are:
-4 for C in CH4, because carbon has greater electronegativity than hydrogen and he attracts shared electrons.
</span><span>+4 for C in CO2, because carbon has smaller electronegativity than oxygen.
</span><span>+1 for H in both CH4 and H2O, because hydrogen has amaller electronegativity than both carbon and oxygen.
</span>
Hi the answer is actually B
I would i have think it is either a) east or c) west b/c couldn’t go by it self