Answer:
k= 1.925×10^-4 s^-1
1.2 ×10^20 atoms/s
Explanation:
From the information provided;
t1/2=Half life= 1.00 hour or 3600 seconds
Then;
t1/2= 0.693/k
Where k= rate constant
k= 0.693/t1/2 = 0.693/3600
k= 1.925×10^-4 s^-1
Since 1 mole of the nuclide contains 6.02×10^23 atoms
Rate of decay= rate constant × number of atoms
Rate of decay = 1.925×10^-4 s^-1 ×6.02×10^23 atoms
Rate of decay= 1.2 ×10^20 atoms/s
Hi, you've asked an incomplete question. Here's the diagram that completes the question.
Answer:
<u>(B) nonpolar covalent bonds</u>
Explanation:
This structure in the diagram rightly fits the description of a non-covalent bond because there is an equal sharing of electrons of Carbon (C) and Chlorine (Cl).
<em>Remember</em> too that these elements are in their solid-state, hence the CCl4 (carbon tetrachloride) molecules are held strongly together.
Answer:
3NaOH + H3PO4 ---> 3H2O + Na3PO4
Explanation:
Answer:
V = 11.21 L
Explanation:
Given data:
Volume of helium = ?
Number of moles = 0.500 mol
Temperature = 273.15 K
Pressure of gas = 1 atm
Solution:
Formula:
PV = nRT
R = general gas constant = 0.0821 atm.L/ mol.K
V = nRT/P
V = 0.500 mol × 0.0821 atm.L/ mol.K × 273.15 K / 1 atm
V = 11.21 L / 1
V = 11.21 L
Answer:
mass of Helium = mole of Helium x Molarmass of Helium
Explanation:
Mole of Helium = volume of Helium/ 22.4dm^3/mol
= 7.00 x 10^2/22.4
= 31.25mol
Mass of Helium = mole of Helium x Molarmass of Helium
= 31.25mol x 4g/mol
= 125g