Answer:
x+1
Step-by-step explanation:
We know that x^2 -6x-7 is the product of two binomials.
We can solve this two ways, but the easier way is to simply factor rather than divide the area by width.
Two numbers, one of which being -7 allows for the sum of -6 and the product of -7.
Using this information, we can identify the other number is 1, so the length is x+1.
Answer:
simply convert first feets into miles
Given is 5280 feets=1 miles
63756 /5280=12.075 miles
70 minutes = 1.16666= 1.17 hrs
rate is 12.075 miles/1.17 hrs
Step-by-step explanation:
Answer:
its 452.2
Step-by-step explanation:
because im right
Answer:
C
Step-by-step explanation:
Use πr²
The simulation of the medicine and the bowler hat are illustrations of probability
- The probability that the medicine is effective on at least two is 0.767
- The probability that the medicine is effective on none is 0
- The probability that the bowler hits a headpin 4 out of 5 times is 0.3281
<h3>The probability that the medicine is effective on at least two</h3>
From the question,
- Numbers 1 to 7 represents the medicine being effective
- 0, 8 and 9 represents the medicine not being effective
From the simulation, 23 of the 30 randomly generated numbers show that the medicine is effective on at least two
So, the probability is:
p = 23/30
p = 0.767
Hence, the probability that the medicine is effective on at least two is 0.767
<h3>The probability that the medicine is effective on none</h3>
From the simulation, 0 of the 30 randomly generated numbers show that the medicine is effective on none
So, the probability is:
p = 0/30
p = 0
Hence, the probability that the medicine is effective on none is 0
<h3>The probability a bowler hits a headpin</h3>
The probability of hitting a headpin is:
p = 90%
The probability a bowler hits a headpin 4 out of 5 times is:
P(x) = nCx * p^x * (1 - p)^(n - x)
So, we have:
P(4) = 5C4 * (90%)^4 * (1 - 90%)^1
P(4) = 0.3281
Hence, the probability that the bowler hits a headpin 4 out of 5 times is 0.3281
Read more about probabilities at:
brainly.com/question/25870256