Hope this helps explain what was needed to be solved! :)
Answer:
Differentiation will give you the gradient for the tangent at any point, and you use the product rule whenever a function can be thought of as two functions multiplied together.
If
f
(
x
)
=
g
(
x
)
×
h
(
x
)
then
f
'
(
x
)
=
g
'
(
x
)
h
(
x
)
+
g
(
x
)
h
'
(
x
)
so if
y
=
x
×
sin
x
then
d
y
d
x
=
1
×
sin
x
+
x
×
cos
x
=
sin
x
+
x
cos
x
We know that
x
=
π
2
, so the gradient is
m
=
sin
(
π
2
)
+
π
2
cos
(
π
2
)
=
1
+
π
2
×
0
=
1
Therefore, we can say that
y
=
m
x
+
c
y
=
(
1
)
x
+
c
y
=
x
+
c
So all we really need to find now is the value for
c
, the
y
intercept. We do this by working out a point
(
x
,
y
)
on the graph. We are already given that
x
=
π
2
, so
y
=
x
sin
x
=
π
2
sin
(
π
2
)
=
π
2
×
1
=
π
2
∴
(
x
,
y
)
=
(
π
2
,
π
2
)
Now we substitute this into the equation we already have for the tangent,
y
=
x
+
c
,
(
x
,
y
)
=
(
π
2
,
π
2
)
π
2
=
π
2
+
c
c
=
π
2
−
π
2
=
0
∴
y
=
x
+
c
=
x
+
(
0
)
=
x
which means the tangent to the curve
y
=
x
sin
x
at
(
π
2
,
π
2
)
is simply
y
=
x
.
The answer should be 26 hours
To do this find the LCD which in this case, is 16. once you multiply all fractions to where the denominator is 16 you should have: 10/16, 12/16,8/16 and 9/16. Your will be 8/16, 9/16, 10/16, 12/16