1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
erica [24]
3 years ago
14

List three technologies that pose ethical dilemmas?

Engineering
1 answer:
Setler [38]3 years ago
6 0
Hacking into medical devices
3-D printing
Driverless Zipcars
You might be interested in
A 9-m length of 6-mm-diameter steel wire is to be used in a hanger. The wire stretches 18mm when a tensile force P is applied. I
worty [1.4K]

Force P is 11304 N and normal stress is 400 N/mm²

<u>Explanation:</u>

Given-

Length, l = 9 m = 9000 mm

Diameter, d = 6 mm

Radius, r = 3 mm

Stretched length, Δl= 18 mm

Modulus of elasticity, E = 200 GPa = 200 X 10³MPa

Force, P = ?

According to Hooke's law,

Stress is directly proportional to strain.

So,

σ ∝ ε

σ = E ε

Where, E is the modulus of elasticity

We know,

ε = Δl / l

So,

σ = E X Δl/l

σ =

200 X 10^3 * \frac{18}{9000} \\\\ = 400N/mm^2

We know,

σ = P/A

And A = π (r)²

σ = P / π (r)²

400 N/mm^2 = \frac{P}{3.14 X (3)^2} \\\\400 = \frac{P}{28.26} \\\\P = 11304N

Therefore, Force P is 11304 N and normal stress is 400 N/mm²

4 0
3 years ago
A welding rod with κ = 30 (Btu/hr)/(ft ⋅ °F) is 20 cm long and has a diameter of 4 mm. The two ends of the rod are held at 500 °
SOVA2 [1]

Answer:

In Btu:

Q=0.001390 Btu.

In Joule:

Q=1.467 J

Part B:

Temperature at midpoint=274.866 C

Explanation:

Thermal Conductivity=k=30  (Btu/hr)/(ft ⋅ °F)= \frac{30}{3600} (Btu/s)/(ft.F)=8.33*10^{-3}  (Btu/s)/(ft.F)

Thermal Conductivity is SI units:

k=30(Btu/hr)/(ft.F) * \frac{1055.06}{3600*0.3048*0.556} \\k=51.88 W/m.K

Length=20 cm=0.2 m= (20*0.0328) ft=0.656 ft

Radius=4/2=2 mm =0.002 m=(0.002*3.28)ft=0.00656 ft

T_1=500 C=932 F

T_2=50 C= 122 F

Part A:

In Joules (J)

A=\pi *r^2\\A=\pi *(0.002)^2\\A=0.00001256 m^2

Heat Q is:

Q=\frac{k*A*(T_1-T_2)}{L} \\Q=\frac{51.88*0.000012566*(500-50}{0.2}\\ Q=1.467 J

In Btu:

A=\pi *r^2\\A=\pi *(0.00656)^2\\A=0.00013519 m^2

Heat Q is:

Q=\frac{k*A*(T_1-T_2)}{L} \\Q=\frac{8.33*10^{-3}*0.00013519*(932-122}{0.656}\\ Q=0.001390 Btu

PArt B:

At midpoint Length=L/2=0.1 m

Q=\frac{k*A*(T_1-T_2)}{L}

On rearranging:

T_2=T_1-\frac{Q*L}{KA}

T_2=500-\frac{1.467*0.1}{51.88*0.00001256} \\T_2=274.866\ C

4 0
3 years ago
1. A gas pressure difference is applied to the legs of a U-tube manometer filled with a liquid with S = 1.5. The manometer readi
julia-pushkina [17]

Answer:

1) The pressure difference is 4.207 kilopascals.

2) 2.5 pounds per square inch equals 5.093 inches of mercury and 5.768 feet of water.

Explanation:

1) We can calculate the gas pressure difference from the U-tube manometer by using the following hydrostatic formula:

\Delta P = \frac{S\cdot \rho_{w}\cdot g \cdot \Delta h}{1000} (Eq. 1)

Where:

S - Relative density, dimensionless.

\rho_{w} - Density of water, measured in kilograms per cubic meter.

g - Gravitational acceleration, measured in meters per square second.

\Delta h - Height difference in the U-tube manometer, measured in meters.

\Delta P - Gas pressure difference, measured in kilopascals.

If we know that S = 1.5, \rho_{w} = 1000\,\frac{kg}{m^{3}}, g = 9.807\,\frac{m}{s^{2}} and \Delta h = 0.286\,m, then the pressure difference is:

\Delta P = \frac{1.5\cdot \left(1000\,\frac{kg}{m^{3}} \right)\cdot \left(9.807\,\frac{m}{s^{2}} \right)\cdot (0.286\,m)}{1000}

\Delta P = 4.207\,kPa

The pressure difference is 4.207 kilopascals.

2) From Physics we remember that a pound per square unit equals 2.036 inches of mercury and 2.307 feet of water and we must multiply the given pressure by corresponding conversion unit: (p = 2.5\,psi)

p = 2.5\,psi\times 2.037\,\frac{in\,Hg}{psi}

p = 5.093\,in\,Hg

p = 2.5\,psi\times 2.307\,\frac{ft\,H_{2}O}{psi}

p = 5.768\,ft\,H_{2}O

2.5 pounds per square inch equals 5.093 inches of mercury and 5.768 feet of water.

4 0
4 years ago
The best way to check the efficiency of individual cylinders is:________.
KATRIN_1 [288]

Answer:

To run. The machine one at a time

Explanation:

8 0
4 years ago
Impedance is defined as the total opposition to current in an AC circuit. Question 17 options: True False
ArbitrLikvidat [17]

Answer: True

Explanation:

The total opposition to current flow in an AC circuit is known as Impedance.

8 0
2 years ago
Other questions:
  • A mass of 2 kg is suspended from a vertical spring of stiffness 15 kN/m and subject to viscous damping of 5 Ns/m. What is the am
    9·1 answer
  • Type the correct answer in the box. Spell all words correctly.
    6·1 answer
  • Nitrogen can be liquefied using a Joule-Thomson expansioni process. This is done by rapidlyl and adiabatically expandign cold ni
    15·1 answer
  • Where is the Volkswagen super factory located? how is this locate relevant to us?​
    5·1 answer
  • Write a program to sort the student’s names (ascending order), calculate students’ average test scores and letter grades (Use th
    13·1 answer
  • Given the vector current density J = 10rho2zarho − 4rho cos2 φ aφ mA/m2:
    13·1 answer
  • Someone please help me with this I’m stuck on it ?!i don’t have a lot of time
    12·1 answer
  • Determine the voltage which must be applied to a 1 k 2 resistor in order that a current of
    10·1 answer
  • can you give me a paragraph on What is Electrical Engineering and why is it considered the largest branch of Engineering? I real
    15·1 answer
  • There are four spheres of earth. These include __________, _________, ________ and _________. They are important because when th
    12·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!