1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
natali 33 [55]
3 years ago
7

): drivers must slow down from 60 to 40 mi/hr to negotiate a severe curve. A warning sign is visible for a distance of 120 ft. H

ow far in advance of the curve must the sign be located.
Engineering
1 answer:
Yakvenalex [24]3 years ago
8 0

Answer:

Explanation:

Total Stopping distance is the sum of the reaction distance and the braking distance, such that ;

d=dr + db =1.47St +[ ( Si 2- Sf2 ) / 30(F/0.01G) ]

In this case, the reaction time, t, is the AASHTO standard, or 2. 5 s. The friction factor, F, is based upon the standard AASHTO deceleration rate of 11.2 ft/s2 (F = 11.2/32.2 = 0.348) and the speed is given as 40 mph.

d = 1.47x60x2.5+ [ (60^2-40^2) / 30x 0.348 ]

d = 220.5 + ( (3600-1600) / 10.44 )

d = 220.5 + 191.57

d = 412.07ft.

Since the sign can be seen clearly at 120 ft.

Then the position of the sign should be,

= 412.07 - 120

= 292.07 ft

You might be interested in
The diameter of an extruder barrel = 85 mm and its length = 2.00 m. The screw rotates at 55 rev/min, its channel depth = 8.0 mm,
babunello [35]

Answer:

Qx = 9.109.10^5 \times 10^{-6} m³/s  

Explanation:

given data

diameter = 85 mm

length = 2 m

depth = 9mm

N = 60 rev/min

pressure p = 11 × 10^6 Pa

viscosity n = 100 Pas

angle = 18°

so  Qd will be

Qd = 0.5 × π² ×D²×dc × sinA × cosA   ..............1

put here value and we get

Qd = 0.5 × π² × ( 85 \times 10^{-3} )²× 9  \times 10^{-3}  × sin18 × cos18

Qd = 94.305 × 10^{-6} m³/s

and

Qb = p × π × D × dc³ × sin²A ÷  12  × n × L    ............2

Qb = 11 × 10^{6} × π × 85 \times 10^{-3}  × ( 9  \times 10^{-3} )³ × sin²18 ÷  12  × 100 × 2

Qb = 85.2 × 10^{-6} m³/s

so here

volume flow rate Qx = Qd - Qb   ..............3

Qx =  94.305 × 10^{-6}  - 85.2 × 10^{-6}  

Qx = 9.109.10^5 \times 10^{-6} m³/s  

8 0
3 years ago
Technician A states that a brake lathe is used to make a used brake rotor surface "like new". Technician B states that a brake l
nikitadnepr [17]

Answer:

Both Technician A and B are correct.

Explanation: A brake lathe is a special tool used to improve or work on the surface of brake pads it helps to smoothen the surface.

Brake lathe has been found to be very effective in removing rusts in rotors and unevenness in the brake pad surfaces in order to ensure the efficiency and effectiveness of the brake system of a vehicle. Hence, a brake lathe helps to make brake rotor surface as smooth as possible.

7 0
2 years ago
A four-cylinder, four-stroke internal combustion engine has a bore of 3.7 in. and a stroke of 3.4 in. The clearance volume is 16
Bad White [126]

Answer:

the net work per cycle \mathbf{W_{net} = 0.777593696}  Btu per cycle

the power developed by the engine, W = 88.0144746 hp

Explanation:

the information given includes;

diameter of the four-cylinder bore = 3.7 in

length of the stroke = 3.4 in

The clearance volume = 16% = 0.16

The cylindrical volume V_2 = 0.16 V_1

the crankshaft N rotates at a speed of  2400 RPM.

At the beginning of the compression , temperature T_1 = 60 F = 519.67 R    

and;

Otto cycle with a pressure =  14.5 lbf/in² = (14.5 × 144 ) lb/ft²

= 2088 lb/ft²

The maximum temperature in the cycle is 5200 R

From the given information; the change in volume is:

V_1-V_2 = \dfrac{\pi}{4}D^2L

V_1-0.16V_1= \dfrac{\pi}{4}(3.7)^2(3.4)

V_1-0.16V_1= 36.55714291

0.84 V_1 =36.55714291

V_1 =\dfrac{36.55714291}{0.84 }

V_1 =43.52040823 \ in^3 \\ \\  V_1 = 43.52 \ in^3

V_1 = 0.02518 \ ft^3

the mass in air ( lb) can be determined by using the formula:

m = \dfrac{P_1V_1}{RT}

where;

R = 53.3533 ft.lbf/lb.R°

m = \dfrac{2088 \ lb/ft^2 \times 0.02518 \ ft^3}{53.3533 \ ft .lbf/lb.^0R  \times 519 .67 ^0 R}

m = 0.0018962 lb

From the tables  of ideal gas properties at Temperature 519.67 R

v_{r1} =158.58

u_1 = 88.62 Btu/lb

At state of volume 2; the relative volume can be determined as:

v_{r2} = v_{r1}  \times \dfrac{V_2}{V_1}

v_{r2} = 158.58 \times 0.16

v_{r2} = 25.3728

The specific energy u_2 at v_{r2} = 25.3728 is 184.7 Btu/lb

From the tables of ideal gas properties at maximum Temperature T = 5200 R

v_{r3} = 0.1828

u_3 = 1098 \ Btu/lb

To determine the relative volume at state 4; we have:

v_{r4} = v_{r3} \times \dfrac{V_1}{V_2}

v_{r4} =0.1828 \times \dfrac{1}{0.16}

v_{r4} =1.1425

The specific energy u_4 at v_{r4} =1.1425 is 591.84 Btu/lb

Now; the net work per cycle can now be calculated as by using the following formula:

W_{net} = Heat  \ supplied - Heat  \ rejected

W_{net} = m(u_3-u_2)-m(u_4 - u_1)

W_{net} = m(u_3-u_2- u_4 + u_1)

W_{net} = m(1098-184.7- 591.84 + 88.62)

W_{net} = 0.0018962 \times (1098-184.7- 591.84 + 88.62)

W_{net} = 0.0018962 \times (410.08)

\mathbf{W_{net} = 0.777593696}  Btu per cycle

the power developed by the engine, in horsepower. can be calculated as follows;

In the  four-cylinder, four-stroke internal combustion engine; the power developed by the engine can be calculated by using the expression:

W = 4 \times N'  \times W_{net

where ;

N' = \dfrac{2400}{2}

N' = 1200 cycles/min

N' = 1200 cycles/60 seconds

N' = 20 cycles/sec

W = 4 × 20 cycles/sec ×  0.777593696

W = 62.20749568 Btu/s

W = 88.0144746 hp

8 0
2 years ago
Five hundred gallons of 89-octane gasoline is obtained by mixing 87-octane gasoline with 92-octane gasoline. (a) Write a system
miskamm [114]

Explanation:

a) The total volume equals the sum of the volumes.

500 = x + y

The total octane amount equals the sum of the octane amounts.

89(500) = 87x + 92y

44500 = 87x + 92y

b) desmos.com/calculator/ekegkzllqx

As x increases, y decreases.

c) Use substitution or elimination to solve the system of equations.

44500 = 87x + 92(500−x)

44500 = 87x + 46000 − 92x

5x = 1500

x = 300

y = 200

The required volumes are 300 gallons of 87 gasoline and 200 gallons of 92 gasoline.

6 0
3 years ago
A 0.40-m3 insulated piston-cylinder device initially contains 1.3 kg of air at 30°C. At this state, the piston is free to move.
Setler79 [48]

Answer:

(a) The Final Temperature is 315.25 K.

(b) The amount of mass that has entered  0.5742 Kg.

(c) The work done is 56.52 kJ.

(d) The entrophy generation is 0.0398 kJ/kgK.

Explanation:

Explanation is in the following attachments.

6 0
3 years ago
Other questions:
  • Name two types of battery chargers that are used in mechanics
    14·1 answer
  • I need solution for this question please ​
    7·2 answers
  • Give an example of one technology that is well matched to the needs of the environment, and one technology that is not.
    9·1 answer
  • If a barrel of oil weighs 1.5 kN, calculate the specific weight, density, and specific gravity of the oil. The barrel weighs 110
    7·1 answer
  • A thick steel slab ( 7800 kg/m3, 480 J/kg·K, 50 W/m·K) is initially at 300°C and is cooled by water jets impinging on one of its
    14·2 answers
  • Help Please!!!!!!!<br><br> Whatever3443<br> Please help!
    9·2 answers
  • Which design activity is part of the design for manufacturability (DFM) methodology?
    10·1 answer
  • For an AC machine, what percentage of power is at the negative terminal?
    14·1 answer
  • Which step in the engineering design phase is requiring concussion prevention from blows up to 40 mph an example of?
    6·1 answer
  • How might an operations manager alter operations to meet customer demand? Name at least two ways.
    7·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!