Answer:
Im guessing this is for CEA for PLTW, if so look up the exact assignment number and look at online examples of the exact same assignment.
Explanation:
During some actual expansion and compression processes in piston-cylinder devices, the gases have been are the P1= P2.
<h3>What is the pressure?</h3>
Pressure is something that has the pressure that is physical and that causes the pressure is piston-cylinder devices.
During a few real enlargements and compression procedures in piston-cylinder devices, the gases were located to meet the connection PV n = C, wherein n and C are constants.
Read more about the pressure :
brainly.com/question/25736513
#SPJ1
Answer:
Explanation:
<u><em>General Considerations</em></u>
The design of the yard will affect the natural surface and subsurface drainage pattern of a watershed or individual hillslope. Yard drainage design has as its basic objective the reduction or elimination of energy generated by flowing water. The destructive power of flowing water increases exponentially as its velocity increases. Therefore, water must not be allowed to develop sufficient volume or velocity so as to cause excessive wear along ditches, below culverts, or along exposed running surfaces, cuts, or fills.
A yard drainage system must satisfy two main criteria if it is to be effective throughout its design life:
1. It must allow for a minimum of disturbance of the natural drainage pattern.
2.It must drain surface and subsurface water away from the roadway and dissipate it in a way that prevents excessive collection of water in unstable areas and subsequent downstream erosion
The diagram below ilustrate diffrent sturcture of yard to be consider before planing to utiliza rainwater
Answer:

Explanation:
From the question we are told that:
Discharge rate 
Distance 
Elevation of the pumping station 
Elevation of the Exit point 
Generally the Steady Flow Energy Equation SFEE is mathematically given by

With

And

Therefore


Generally h is give as


Therefore



Answer:
strains for the respective cases are
0.287
0.318
0.127
and for the entire process 0.733
Explanation:
The formula for the true strain is given as:

Where
True strain
l= length of the member after deformation
original length of the member
<u>Now for the first case we have</u>
l= 1.6m

thus,


<u>similarly for the second case we have</u>
l= 2.2m
(as the length is changing from 1.6m in this case)
thus,


<u>Now for the third case</u>
l= 2.5m

thus,


<u>Now the true strain for the entire process</u>
l=2.5m

thus,
