Answer:
Power will be 0.2023 watt
And when amplitude is halved then power will be 0.0505 watt
Explanation:
We have given mass of the Piano wire m = 2.60 gram = 0.0026 kg
Length of wire l = 84 cm = 0.84 m
So mass density 
Tension in the wire T = 25 N
Frequency f = 120 Hz
So angular frequency 
And amplitude A = 1.6 mm = 0.0016 m
We have to find the generated power
Power is given by 
From the relation we can see that power 
So if amplitude is halved then power will be
times
So power will be equal to 
Answer:
F₃ = 122.88 N
θ₃ = 20.63°
Explanation:
First we find the components of F₁:
For x-component:
F₁ₓ = F₁ Cos θ₁
F₁ₓ = (50 N) Cos 60°
F₁ₓ = 25 N
For y-component:
F₁y = F₁ Sin θ₁
F₁y = (50 N) Sin 60°
F₁y = 43.3 N
Now, for F₂. As, F₂ acts along x-axis. Therefore, its y-component will be zero and its x-xomponent will be equal to the magnitude of force itself:
F₂ₓ = F₂ = 90 N
F₂y = 0 N
Now, for the resultant force on ball to be zero, the sum of x-components of the forces and the sum of the y-component of the forces must also be equal to zero:
F₁ₓ + F₂ₓ + F₃ₓ = 0 N
25 N + 90 N + F₃ₓ = 0 N
F₃ₓ = - 115 N
for y-components:
F₁y + F₂y + F₃y = 0 N
43.3 N + 0 N + F₃y = 0 N
F₃y = - 43.3 N
Now, the magnitude of F₃ can be found as:
F₃ = √F₃ₓ² + F₃y²
F₃ = √[(- 115 N)² + (- 43.3 N)²]
<u>F₃ = 122.88 N</u>
and the direction is given as:
θ₃ = tan⁻¹(F₃y/F₃ₓ) = tan⁻¹(-43.3 N/-115 N)
<u>θ₃ = 20.63°</u>
Answer:
Carbon and oxygen
Explanation:
White dwarfs are the stars which have used all their hydrogen and helium fuel and now exists with only carbon and oxygen in their core. Their size reduces up to one hundredth times of the size of their sun in early stages and yet they possess the same mass.
Due to loss of fuels and impact of gravity, a young star collapses on itself leading to formation of dwarf star.
Answer:
0.02 m
Explanation:
R₁ = initial distance jumped by jumper = 7.4 m
R₂ = final distance jumped by jumper = ?
θ₁ = initial angle of jump = 45°
θ₂ = final angle of jump = 42.9°
= speed at which jumper jumps at all time
initial distance jumped is given as

final distance jumped is given as

Dividing final distance by initial distance



distance lost is given as
d = 
d = 7.4 - 7.38
d = 0.02 m