1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
SSSSS [86.1K]
3 years ago
7

A ball of mass 24.1 g is attached to a cord of length 0.417 m and rotates in a vertical circle. What is the minimum speed the ba

ll must have at the top of the circle so the cord does not become slack? The acceleration of gravity is 9.8 m/s².
Answer in units of m/s.
Physics
1 answer:
Karo-lina-s [1.5K]3 years ago
6 0

Answer:

<em>the minimum speed that the ball must have so that the cord does not become slack is</em> <em>2.02 m/s.</em>

<em></em>

Explanation:

In order to avoid slack, the centripetal force of the ball must equal its weight at the top of the circle. Therefore,

F_c = F_g

m v² / r = m g

v² = g r

v = √[g r]

v = √[(9.8 m/s²)(0.417 m)]

<em>v = 2.02 m/s </em>

Therefore,<em> the minimum speed that the ball must have so that the cord does not become slack is</em> <em>2.02 m/s.</em>

You might be interested in
One electron collides elastically with a second electron initially at rest. After the collision, the radii of their trajectories
morpeh [17]

Answer:

63.750KeV

Explanation:

We are given that

Initial velocity of second electron,u_2=0

Radius,r_1=0

r_2=2.3 cm=\frac{2.3}{100}=0.023 m

1 m=100 cm

Magnetic field,B=0.0370 T

We have to determine the energy of the incident electron.

Mass of electron,m=9.1\times 10^{-31} kg

Charge on an electron,q=-1.6\times 10^{-19} C

Velocity,v=\frac{Bqr}{m}

Using the formula

Speed of electron,v_1=\frac{Bqr_1}{m}=\frac{0.0370\times 1.6\times 10^{-19}\times 0}{9.1\times 10^{-31}}=0

Speed of second electron,v_2=\frac{0.0370\times 1.6\times 10^{-19}\times 0.023}{9.1\times 10^{-31}}

v_2=1.5\times 10^8 m/s

Kinetic energy of incident electron=\frac{1}{2}mv^2_1+\frac{1}{2}mv^2_2

Kinetic energy of incident electron=0+\frac{1}{2}(9.1\times 10^{-31})(1.5\times 10^8)^2=1.02\times 10^{-14} J

Kinetic energy of incident electron=\frac{1.02\times 10^{-14}}{1.6\times 10^{-19}}=63750eV=\frac{63750}{1000}=63.750KeV

1KeV=1000eV

3 0
3 years ago
Which term describes this diagram
STALIN [3.7K]

Answer:

the answer is letter; C

Explanation:

4 0
2 years ago
Read 2 more answers
efrigerant-134a is expanded isentropically from 600 kPa and 70°C at the inlet of a steady-flow turbine to 100 kPa at the outlet.
PolarNik [594]

Answer:

Inlet : v_i=0.0646\frac{m}{s}

Outlet:  v_o=0.171\frac{m}{s}

Explanation:

1) Notation and important concepts

Flow of mass represent "the mass of a substance which passes per unit of time".

Flow rate represent "a measure of the volume of liquid that moves in a certain amount of time"

Specific volume is "the ratio of the substance's volume to its mass. It is the reciprocal of density."

Isentropic process is a "thermodynamic process, in which the entropy of the fluid or gas remains constant".

We know that the flow of mass is given by the following expression

\dot{m}=\frac{\dot{V}}{\upsilon}, where \dot{V} represent the flow rate and \upsilon the specific volume at the pressure and temperature given.

A_i=0.5m^2 is the inlet area

P_i=600Kpa pressure at the inlet area

T_i=70C temperature at the inlet area

A_o=1m^2 is the outlet area

P_o=100Kpa pressure at the outlet area

T_o=C temperature at the outlet area

\dot{m}=0.75\frac{kg}{s} represent the flow of mass

If we look at the first figure attached Table A-13 we see that the specific volume for the inlet condition is

\upsilon_i =0.04304\frac{kg}{m^3} and the entropy is h_i=1.0645\frac{KJ}{KgK}=h_o

With the value of entropy and the outlet pressure of 100 Kpa we can find we specific volume at the outlet condition since w ehave the entropy h_o=1.0645\frac{KJ}{KgK}

Since on the table we don't have the exact value we need to interpolate between these two values (see the second figure attached)

h_1=1.0531\frac{KJ}{KgK} , \upsilon_1=0.22473\frac{kg}{m^3}

h_2=1.0829\frac{KJ}{KgK} , \upsilon_2=0.23349\frac{kg}{m^3}

Our interest value would be given using interpolation like this:

\upsilon=0.22473+\frac{(0.23349-0.22473)}{(1.0829-1.0531)}(1.0645-1.0531)=0.228\frac{kg}{m^3}

2) Solution to the problem

Now since we have all the info required to solve the problem we can find the velocities on this way.

We know from the definition of flow of mass that \dot{m}=\frac{\dot{V}}{\upsilon}, but since \dot{V}=Av we have this:

\dot{m}=\frac{Av}{\upsilon}

If we solve from the velocity v we have this:

v=\frac{\upsilon \dot{m}}{A}   (*)

And now we just need to replace the values into equation (*)

For the inlet case:

v_i=\frac{\upsilon_i \dot{m}}{A_i}=\frac{0.043069\frac{kg}{m^3}(0.75\frac{kg}{s})}{0.5m^2}=0.0646\frac{m}{s}

For the oulet case:

v_o=\frac{\upsilon_o \dot{m}}{A_o}=\frac{0.228\frac{kg}{m^3}(0.75\frac{kg}{s})}{1m^2}=0.171\frac{m}{s}

7 0
3 years ago
What happens when a person’s immune system is very weak?
Alexeev081 [22]
The correct answer is C) becuse without certain medicine they will dieeeee
6 0
3 years ago
How can water boil without heat?​
kaheart [24]

Answer:

Put water at room temperature into a vacuum chamber and begin removing the air. Eventually, the boiling temperature will fall below the water temperature and boiling will begin without heating. Or if you want to be easy but messy, add dry ice to a bowl of water and watch how the water starts to boil.

3 0
2 years ago
Other questions:
  • A model airplane with mass 0.5 kg hangs from a rubber band with spring constant 45 N/m. How much is the rubber band stretched wh
    14·2 answers
  • A plane flying against the wind covers the 900-kilometer distance between two aerodromes in 2 hours. The same plane flying with
    9·1 answer
  • How are surface temperature and length of year on a planet related to the planet’s distance from the Sun?
    12·1 answer
  • What is a prediction​
    10·2 answers
  • What is a supernova type ia
    13·1 answer
  • A student made the following observations about a squirrel’s movements:
    14·1 answer
  • What is one advantage of doing a feild experiment instead of a lobortory expirament
    6·1 answer
  • I this right....????
    11·2 answers
  • Derive an expression for the workdone by a torque?<br><br><br><br><br><br>​
    14·2 answers
  • Please help thanks :)
    8·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!