Answer:
The fraction of its energy that it radiates every second is
.
Explanation:
Suppose Electromagnetic radiation is emitted by accelerating charges. The rate at which energy is emitted from an accelerating charge that has charge q and acceleration a is given by

Given that,
Kinetic energy = 6.2 MeV
Radius = 0.500 m
We need to calculate the acceleration
Using formula of acceleration

Put the value into the formula

Put the value into the formula


We need to calculate the rate at which it emits energy because of its acceleration is

Put the value into the formula


The energy in ev/s


We need to calculate the fraction of its energy that it radiates every second


Hence, The fraction of its energy that it radiates every second is
.
Answer:
No, it cannot. The car needs the friction of the surface to drive because the car pushes the surface backwards, and the surfaces makes a reaction force pushing the car forward, and that works because of the friction. In a frictionless surface the tires would rotate in the same place
Answer:
<em>The mass of the apple is 0.172 kg (172 g)</em>
Explanation:
<u>The Law Of Conservation Of Linear Momentum
</u>
The total momentum of a system of bodies is conserved unless an external force is applied to it. The formula for the momentum of a body with mass m and speed v is
P=mv.
If we have a system of two bodies, then the total momentum is the sum of both momentums:

If a collision occurs and the velocities change to v', the final momentum is:

Since the total momentum is conserved, then:
P = P'
Or, equivalently:

If both masses stick together after the collision at a common speed v', then:

We are given the mass of an arrow m1=43 g = 0.043 kg traveling at v1=84 m/s to the right (positive direction). It strikes an apple of unknown mass m2 originally at rest (v2=0). The common speed after they collide is v'=16.8 m/s.
We need to solve the last equation for m2:

Factoring m2 and m1:

Solving:

Substituting:



The mass of the apple is 0.172 kg (172 g)
Momentum = 0.5 * 4 = 2
to conclude the man’s velocity after he throws the piece of equipment, divide
this number by the man’s mass.
v = 2/90
This is about 0.0222 m/s. To know if he can move 6 meters at velocity in
4minutes, use the following equation.
d = v * t, t = 4 * 60 = 240 s
d = 2/90 * 240 = 5⅓ meters.
This is ⅔ of a meter from the spaceship. To know the velocity that he must have
to move 6 meter, use the same equation.
6 = v * 240
v = 6/240
This is about 0.00416 m/s.
His final momentum = 90 * 6/240 = 2.25
To know the velocity of the package, divide this number by the mass of the
package.
v = 2.25/0.5 = 4.5 m/s
Answer:
kg m/s
Explanation:
e = Charge = C
V = Voltage = 
c = Speed of light = m/s
Momentum is given by

The unit of MeV/c in SI fundamental units is kg m/s