1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Blizzard [7]
3 years ago
11

Average after 8 test is 91%. if he gets a 78% on his 9th test what will be the new acerage

Mathematics
1 answer:
Vika [28.1K]3 years ago
6 0
All you need to do is add te averages together then divide them by 2. 91%+78%=169% 169%÷2=84.5% So the new test average is 84.5%
You might be interested in
For any triangle ABC note down the sine and cos theorems ( sinA/a= sinB/b etc..)
SCORPION-xisa [38]

Answer:

Step-by-step explanation:

Law of sines is:

(sin A) / a = (sin B) / b = (sin C) / c

Law of cosines is:

c² = a² + b² − 2ab cos C

Note that a, b, and c are interchangeable, so long as the angle in the cosine corresponds to the side on the left of the equation (for example, angle C is opposite of side c).

Also, angles of a triangle add up to 180° or π.

(i) sin(B−C) / sin(B+C)

Since A+B+C = π, B+C = π−A:

sin(B−C) / sin(π−A)

Using angle shift property:

sin(B−C) / sin A

Using angle sum/difference identity:

(sin B cos C − cos B sin C) / sin A

Distribute:

(sin B cos C) / sin A − (cos B sin C) / sin A

From law of sines, sin B / sin A = b / a, and sin C / sin A = c / a.

(b/a) cos C − (c/a) cos B

From law of cosines:

c² = a² + b² − 2ab cos C

(c/a)² = 1 + (b/a)² − 2(b/a) cos C

2(b/a) cos C = 1 + (b/a)² − (c/a)²

(b/a) cos C = ½ + ½ (b/a)² − ½ (c/a)²

Similarly:

b² = a² + c² − 2ac cos B

(b/a)² = 1 + (c/a)² − 2(c/a) cos B

2(c/a) cos B = 1 + (c/a)² − (b/a)²

(c/a) cos B = ½ + ½ (c/a)² − ½ (b/a)²

Substituting:

[ ½ + ½ (b/a)² − ½ (c/a)² ] − [ ½ + ½ (c/a)² − ½ (b/a)² ]

½ + ½ (b/a)² − ½ (c/a)² − ½ − ½ (c/a)² + ½ (b/a)²

(b/a)² − (c/a)²

(b² − c²) / a²

(ii) a (cos B + cos C)

a cos B + a cos C

From law of cosines, we know:

b² = a² + c² − 2ac cos B

2ac cos B = a² + c² − b²

a cos B = 1/(2c) (a² + c² − b²)

Similarly:

c² = a² + b² − 2ab cos C

2ab cos C = a² + b² − c²

a cos C = 1/(2b) (a² + b² − c²)

Substituting:

1/(2c) (a² + c² − b²) + 1/(2b) (a² + b² − c²)

Common denominator:

1/(2bc) (a²b + bc² − b³) + 1/(2bc) (a²c + b²c − c³)

1/(2bc) (a²b + bc² − b³ + a²c + b²c − c³)

Rearrange:

1/(2bc) [a²b + a²c + bc² + b²c − (b³ + c³)]

Factor (use sum of cubes):

1/(2bc) [a² (b + c) + bc (b + c) − (b + c)(b² − bc + c²)]

(b + c)/(2bc) [a² + bc − (b² − bc + c²)]

(b + c)/(2bc) (a² + bc − b² + bc − c²)

(b + c)/(2bc) (2bc + a² − b² − c²)

Distribute:

(b + c)/(2bc) (2bc) + (b + c)/(2bc) (a² − b² − c²)

(b + c) + (b + c)/(2bc) (a² − b² − c²)

From law of cosines, we know:

a² = b² + c² − 2bc cos A

2bc cos A = b² + c² − a²

cos A = (b² + c² − a²) / (2bc)

-cos A = (a² − b² − c²) / (2bc)

Substituting:

(b + c) + (b + c)(-cos A)

(b + c)(1 − cos A)

From half angle formula, we can rewrite this as:

2(b + c) sin²(A/2)

(iii) (b + c) cos A + (a + c) cos B + (a + b) cos C

From law of cosines, we know:

cos A = (b² + c² − a²) / (2bc)

cos B = (a² + c² − b²) / (2ac)

cos C = (a² + b² − c²) / (2ab)

Substituting:

(b + c) (b² + c² − a²) / (2bc) + (a + c) (a² + c² − b²) / (2ac) + (a + b) (a² + b² − c²) / (2ab)

Common denominator:

(ab + ac) (b² + c² − a²) / (2abc) + (ab + bc) (a² + c² − b²) / (2abc) + (ac + bc) (a² + b² − c²) / (2abc)

[(ab + ac) (b² + c² − a²) + (ab + bc) (a² + c² − b²) + (ac + bc) (a² + b² − c²)] / (2abc)

We have to distribute, which is messy.  To keep things neat, let's do this one at a time.  First, let's look at the a² terms.

-a² (ab + ac) + a² (ab + bc) + a² (ac + bc)

a² (-ab − ac + ab + bc + ac + bc)

2a²bc

Repeating for the b² terms:

b² (ab + ac) − b² (ab + bc) + b² (ac + bc)

b² (ab + ac − ab − bc + ac + bc)

2ab²c

And the c² terms:

c² (ab + ac) + c² (ab + bc) − c² (ac + bc)

c² (ab + ac + ab + bc − ac − bc)

2abc²

Substituting:

(2a²bc + 2ab²c + 2abc²) / (2abc)

2abc (a + b + c) / (2abc)

a + b + c

8 0
3 years ago
What is the difference between<br> x2 . x? and (x2)
matrenka [14]

Answer: 2x and x2 are the same

Step-by-step explanation:

3 0
2 years ago
If the basketball player scored 15 baskets out of 21 tries. How many tries would it take to score 20 baskets?
Evgen [1.6K]
28 tries. The ratio is 5:7, so once you multiply 5 by 4 to get 20, you do the same to 7 to get 28.
6 0
3 years ago
49,52,52,52,55,55,74,67 find Q3
Gelneren [198K]

Answer:

Answer:

Quartile Statistics

First Quartile Q1 = 52

Second Quartile Q2 = 53.5

Third Quartile Q3 = 61

Interquartile Range IQR = 9

Median = Q2 x˜ = 53.5

Minimum Min = 49

Maximum Max = 74

Range R = 25

Step-by-step explanation:

8 0
3 years ago
What is the value of x<br>1. 124<br>2. 62<br>3. 112<br>4. 68<br>explain why the answer is correct ​
Fynjy0 [20]

Answer:

<h2>3.112<em> </em><em>because</em><em> </em><em>5</em><em>6</em><em>+</em><em>5</em><em>6</em><em>=</em><em>1</em><em>1</em><em>2</em></h2>
3 0
2 years ago
Read 2 more answers
Other questions:
  • What is sin 67 degrees?
    14·2 answers
  • Do you times two by the radius to equal diameter?​ I need to make sure.
    6·1 answer
  • The sun is 62 degrees above the horizon. A tree casts a shadow that is 12 feet long. How tall is the tree?
    7·1 answer
  • Can i please get help on 46,66,66, and 74
    5·1 answer
  • The volume of this triangular prism is 64 cubic inches. what is the value of G?
    13·1 answer
  • I really need the answer for this and how you got it please!
    11·1 answer
  • The slope for , (-2, 5 ) , (2,0 )
    10·2 answers
  • Can someone help me with this Geometry question? Will mark Brainliest.
    7·2 answers
  • Boris currently has a savings account. He saves $25 per month.
    8·1 answer
  • one morning the outside temperature was 14 Fahrenheit fine on the outside temperature had risen 18 Fahrenheit Play Midnight. By
    9·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!