10 ≤ x ≤ 30, x < 2y, x < 40.
Solution:
Given x is the number of graphing calculators produced daily and
y is the number of scientific calculators produced daily.
Step 1: A company produce atleast 10 and not more than 30 graphing calculators per day.
⇒ 10 ≤ x < 30
Step 2: Each day, the number of graphing calculators cannot exceed twice the number of scientific calculators produced.
⇒ x < 2y
Step 3: The number of scientific calculators cannot exceed 40 per day.
⇒ x < 40
Hence, the constraints are 10 ≤ x ≤ 30, x < 2y, x < 40.
Answer:
eszxfd
Step-by-step explanation:
bearing in mind that, whenever we have an absolute value expression, is in effect a piece-wise function with a positive and a negative version of the expression, so
![\bf |x^2-4x-5|=7\implies \begin{cases} +(x^2-4x-5)=7\\\\ -(x^2-4x-5)=7 \end{cases} \\\\[-0.35em] ~\dotfill\\\\ +(x^2-4x-5)=7\implies x^2-4x-5=7\implies x^2-4x-12=0 \\\\\\ (x-6)(x+2)=0\implies x= \begin{cases} 6\\ -2 \end{cases} \\\\[-0.35em] ~\dotfill\\\\ -(x^2-4x-5)=7\implies x^2-4x-5=-7\implies x^2-4x+2=0 \\\\\\ (x-2)(x-2)=0\implies x = 2](https://tex.z-dn.net/?f=%5Cbf%20%7Cx%5E2-4x-5%7C%3D7%5Cimplies%20%5Cbegin%7Bcases%7D%20%2B%28x%5E2-4x-5%29%3D7%5C%5C%5C%5C%20-%28x%5E2-4x-5%29%3D7%20%5Cend%7Bcases%7D%20%5C%5C%5C%5C%5B-0.35em%5D%20~%5Cdotfill%5C%5C%5C%5C%20%2B%28x%5E2-4x-5%29%3D7%5Cimplies%20x%5E2-4x-5%3D7%5Cimplies%20x%5E2-4x-12%3D0%20%5C%5C%5C%5C%5C%5C%20%28x-6%29%28x%2B2%29%3D0%5Cimplies%20x%3D%20%5Cbegin%7Bcases%7D%206%5C%5C%20-2%20%5Cend%7Bcases%7D%20%5C%5C%5C%5C%5B-0.35em%5D%20~%5Cdotfill%5C%5C%5C%5C%20-%28x%5E2-4x-5%29%3D7%5Cimplies%20x%5E2-4x-5%3D-7%5Cimplies%20x%5E2-4x%2B2%3D0%20%5C%5C%5C%5C%5C%5C%20%28x-2%29%28x-2%29%3D0%5Cimplies%20x%20%3D%202)
4) 975
5) 53/7650
…… ,… … … …