Answer:
f(x) shift right 2 and up 3 to get g(x)
A is correct.
Step-by-step explanation:
Given:
and 
We need to find transformation that occurs from f(x) to g(x).
Parent function is quadratic equation.
Concept of transformation:-
For horizontal shift:
If x changes to x+a then left or right shift.
a>0 then shift left
a<0 then shift right
For vertical shift:
If y changes to y+a then up or down shift
If b>0 then shift up by a unit
If b<0 then shift down by a unit.


Thus, f(x) shift 2 unit right.

Thus, f(x) shift 3 unit up.
Hence, f(x) shift right 2 and up 3 to get g(x)