Answer:
How to convert volts to electron-volts
How to convert electrical voltage in volts (V) to energy in electron-volts (eV).
You can calculate electron-volts from volts and elementary charge or coulombs, but you can't convert volts to electron-volts since volt and electron-volt units represent different quantities.
Volts to eV calculation with elementary charge
The energy E in electron-volts (eV) is equal to the voltage V in volts (V), times the electric charge Q in elementary charge or proton/electron charge (e):
E(eV) = V(V) × Q(e)
The elementary charge is the electric charge of 1 electron with the e symbol.
So
electronvolt = volt × elementary charge
or
eV = V × e
Example
What is the energy in electron-volts that is consumed in an electrical circuit with voltage supply of 20 volts and charge flow of 40 electron charges?
E = 20V × 40e = 800eV
Volts to eV calculation with coulombs
The energy E in electron-volts (eV) is equal to the voltage V in volts (V), times the electrical charge Q in coulombs (C) divided by 1.602176565×10-19:
E(eV) = V(V) × Q(C) / 1.602176565×10-19
So
electronvolt = volt × coulomb / 1.602176565×10-19
or
eV = V × C / 1.602176565×10-19
Example
What is the energy in electron-volts that is consumed in an electrical circuit with voltage supply of 20 volts and charge flow of 2 coulombs?
E = 20V × 2C / 1.602176565×10-19 = 2.4966×1020eV
Explanation:
Answer:
The chemical formula for ammonium hypochlorite is NH4ClO.
The chemical formula for ammonium nitrate is NH4NO3.
Explanation:
These two are correct
Answer:
Explanation:
Efficiency of the electric power plant is 
Here Temperature of hot source 
and Temperature of sink 
Hence the efficiency is
Now another formula for thermal efficiency Is

Here QI is the of heat taken from source 100 MJ ; Q2 of heat transferred to the sink (river) to be found
W is the of work done and W = QI -Q2
Hence From

Hence the of heat transferred to the river Is 