Answer:
The specific heat of the metal is 2.09899 J/g℃.
Explanation:
Given,
For Metal sample,
mass = 13 grams
T = 73°C
For Water sample,
mass = 60 grams
T = 22°C.
When the metal sample and water sample are mixed,
The addition of metal increases the temperature of the water, as the metal is at higher temperature, and the addition of water decreases the temperature of metal. Therefore, heat lost by metal is equal to the heat gained by water.
Since, heat lost by metal is equal to the heat gained by water,
Qlost = Qgain
However,
Q = (mass) (ΔT) (Cp)
(mass) (ΔT) (Cp) = (mass) (ΔT) (Cp)
After mixing both samples, their temperature changes to 27°C.
It implies that
, water sample temperature changed from 22°C to 27°C and metal sample temperature changed from 73°C to 27°C.
Since, Specific heat of water = 4.184 J/g°C
Let Cp be the specific heat of the metal.
Substituting values,
(13)(73°C - 27°C)(Cp) = (60)(27°C - 22℃)(4.184)
By solving, we get Cp =
Therefore, specific heat of the metal sample is 2.09899 J/g℃.
I think the answer is A. Hope that helped :)
Answer:
covalent
Explanation:
The carbon and the nitrogen very often form bonds in nature, carbon-nitrogen bonds, which are covalent types of bonds. In fact, the bonds between the carbon and nitrogen are one of the most abundant in the biochemistry and the organic chemistry. The bonds between these two can be double bonds, as well as triple bonds. The carbon-nitrogen bonds have the tendency to be strongly polarized toward the nitrogen.
Answer:
I think the answers are... b, d, and maybe a. I don't know for sure. So only put these answers in if you trust me!
Explanation:
I had this very question, and I put in what I think were the answers.
Answer: the answer is c.The unbalanced push causes the cart to speed up.
Explanation:
The application of an unbalanced force (the push) causes the cart to speed up. When the cart is in constant motion, the forces are balanced and there is no speeding up. Once an unbalanced force is added, the cart's speed changes.