Answer:
Perimeter would be 23.57 ft ( approx)
Step-by-step explanation:
Consider triangle ABC is an isosceles triangle,
In which AB = AC,
And, m∠A = 150°,
∵ AB = AC ⇒ m∠B = m∠C,
Now sum of all interior angles of a triangle is 180°,
i.e. m∠A + m∠B + m∠C = 180°,
150°+ m∠B + m∠B= 180°,
2m∠B + 150° = 180°
2m∠B = 30°
⇒ m∠B = 15°
Let D ∈ BC such that AD ⊥ BC,
∵ Altitude of an isosceles triangle is its median,
i.e, BD = DC or BD =
BC
In triangle ADB,
tan 15° = ![\frac{AD}{BD}](https://tex.z-dn.net/?f=%5Cfrac%7BAD%7D%7BBD%7D)
![\implies \tan 15^{\circ}=\frac{AD}{\frac{1}{2}BC}=\frac{2AD}{BC}](https://tex.z-dn.net/?f=%5Cimplies%20%5Ctan%2015%5E%7B%5Ccirc%7D%3D%5Cfrac%7BAD%7D%7B%5Cfrac%7B1%7D%7B2%7DBC%7D%3D%5Cfrac%7B2AD%7D%7BBC%7D)
.............(1)
Now, area of triangle ABC = ![\frac{1}{2}\times AD\times BC](https://tex.z-dn.net/?f=%5Cfrac%7B1%7D%7B2%7D%5Ctimes%20AD%5Ctimes%20BC)
If area = 9 square ft,
![\frac{1}{2}\times AD\times BC = 9](https://tex.z-dn.net/?f=%5Cfrac%7B1%7D%7B2%7D%5Ctimes%20AD%5Ctimes%20BC%20%3D%209)
From equation (1),
![\frac{1}{2}\times \frac{BC \tan 15^{\circ}}{2}\times BC = 9](https://tex.z-dn.net/?f=%5Cfrac%7B1%7D%7B2%7D%5Ctimes%20%5Cfrac%7BBC%20%5Ctan%2015%5E%7B%5Ccirc%7D%7D%7B2%7D%5Ctimes%20BC%20%3D%209)
![BC^2\tan 15^{\circ} = 36](https://tex.z-dn.net/?f=BC%5E2%5Ctan%2015%5E%7B%5Ccirc%7D%20%3D%2036)
![BC^2 =\frac{36}{\tan 15^{\circ}}=134.35](https://tex.z-dn.net/?f=BC%5E2%20%3D%5Cfrac%7B36%7D%7B%5Ctan%2015%5E%7B%5Ccirc%7D%7D%3D134.35)
![\implies BC = 11.59\text{ ft}](https://tex.z-dn.net/?f=%5Cimplies%20BC%20%3D%2011.59%5Ctext%7B%20ft%7D)
From equation (1),
![AD = \frac{11.59 \tan 15^{\circ}}{2}=1.55](https://tex.z-dn.net/?f=AD%20%3D%20%5Cfrac%7B11.59%20%5Ctan%2015%5E%7B%5Ccirc%7D%7D%7B2%7D%3D1.55)
Using Pythagoras theorem,
![AB = \sqrt{AD^2 + BD^2}=\sqrt{1.55^2+(\frac{11.59}{2})^2}=5.99\text{ ft}](https://tex.z-dn.net/?f=AB%20%3D%20%5Csqrt%7BAD%5E2%20%2B%20BD%5E2%7D%3D%5Csqrt%7B1.55%5E2%2B%28%5Cfrac%7B11.59%7D%7B2%7D%29%5E2%7D%3D5.99%5Ctext%7B%20ft%7D)
Hence, perimeter of the triangle ABC= AB + BC + CA
= 5.99 + 11.59 + 5.99
= 23.57 ft