1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
aev [14]
2 years ago
12

Define the double factorial of n, denoted n!!, as follows:n!!={1⋅3⋅5⋅⋅⋅⋅(n−2)⋅n} if n is odd{2⋅4⋅6⋅⋅⋅⋅(n−2)⋅n} if n is evenand (

−1)!! =0!! =1.Find the radius of convergence for the given power series.[(8^n*n!*(3n+3)!*(2n)!!)/(2^n*[(n+9)!]^3*(4n+3)!!)]*(8x+6)^n
Mathematics
1 answer:
tekilochka [14]2 years ago
4 0

Answer:

Radius of convergence of power series is \lim_{n \to \infty}\frac{a_{n}}{a_{n+1}}=\frac{1}{108}

Step-by-step explanation:

Given that:

n!! = 1⋅3⋅5⋅⋅⋅⋅(n−2)⋅n        n is odd

n!! = 2⋅4⋅6⋅⋅⋅⋅(n−2)⋅n       n is even

(-1)!! = 0!! = 1

We have to find the radius of convergence of power series:

\sum_{n=1}^{\infty}[\frac{8^{n}n!(3n+3)!(2n)!!}{2^{n}[(n+9)!]^{3}(4n+3)!!}](8x+6)^{n}\\\\\sum_{n=1}^{\infty}[\frac{8^{n}n!(3n+3)!(2n)!!}{2^{n}[(n+9)!]^{3}(4n+3)!!}]2^{n}(4x+3)^{n}\\\\\sum_{n=1}^{\infty}[\frac{8^{n}n!(3n+3)!(2n)!!}{[(n+9)!]^{3}(4n+3)!!}](x+\frac{3}{4})^{n}\\

Power series centered at x = a is:

\sum_{n=1}^{\infty}c_{n}(x-a)^{n}

\sum_{n=1}^{\infty}[\frac{8^{n}n!(3n+3)!(2n)!!}{2^{n}[(n+9)!]^{3}(4n+3)!!}](8x+6)^{n}\\\\\sum_{n=1}^{\infty}[\frac{8^{n}n!(3n+3)!(2n)!!}{2^{n}[(n+9)!]^{3}(4n+3)!!}]2^{n}(4x+3)^{n}\\\\\sum_{n=1}^{\infty}[\frac{8^{n}4^{n}n!(3n+3)!(2n)!!}{[(n+9)!]^{3}(4n+3)!!}](x+\frac{3}{4})^{n}\\

a_{n}=[\frac{8^{n}4^{n}n!(3n+3)!(2n)!!}{[(n+9)!]^{3}(4n+3)!!}]\\\\a_{n+1}=[\frac{8^{n+1}4^{n+1}n!(3(n+1)+3)!(2(n+1))!!}{[(n+1+9)!]^{3}(4(n+1)+3)!!}]\\\\a_{n+1}=[\frac{8^{n+1}4^{n+1}(n+1)!(3n+6)!(2n+2)!!}{[(n+10)!]^{3}(4n+7)!!}]

Applying the ratio test:

\frac{a_{n}}{a_{n+1}}=\frac{[\frac{32^{n}n!(3n+3)!(2n)!!}{[(n+9)!]^{3}(4n+3)!!}]}{[\frac{32^{n+1}(n+1)!(3n+6)!(2n+2)!!}{[(n+10)!]^{3}(4n+7)!!}]}

\frac{a_{n}}{a_{n+1}}=\frac{(n+10)^{3}(4n+7)(4n+5)}{32(n+1)(3n+4)(3n+5)(3n+6)+(2n+2)}

Applying n → ∞

\lim_{n \to \infty}\frac{a_{n}}{a_{n+1}}= \lim_{n \to \infty}\frac{(n+10)^{3}(4n+7)(4n+5)}{32(n+1)(3n+4)(3n+5)(3n+6)+(2n+2)}

The numerator as well denominator of \frac{a_{n}}{a_{n+1}} are polynomials of fifth degree with leading coefficients:

(1^{3})(4)(4)=16\\(32)(1)(3)(3)(3)(2)=1728\\ \lim_{n \to \infty}\frac{a_{n}}{a_{n+1}}=\frac{16}{1728}=\frac{1}{108}

You might be interested in
What is slope between the points (-5,7) and (4,-8)?
WINSTONCH [101]
The slope can sometimes be called the gradient, and the equation for the gradient is (y2 - y1)/(x2 - x1). So therefore, you'd do: (-8 - 7)/(4 - -5) which is (-15)/9) which is -1 2/3 or -1.6 (recurring), which is your answer. I hope this helps! Let me know if I've confused you :)
3 0
3 years ago
What is 1189^2 x 1809
Trava [24]

Answer:

the answer is : 2557421289

8 0
3 years ago
Read 2 more answers
The graph of a proportional relationship contains the point (-30, 18)
Elena L [17]

Answer:

k=-\frac{3}{5}

Step-by-step explanation:

we know that

A relationship between two variables, x, and y, represent a proportional variation if it can be expressed in the form k=\frac{y}{x} or y=kx

In a proportional relationship the constant of proportionality k is equal to the slope m of the line and the line passes through the origin

we have the point (-30,18)

so

x=-30, y=18

Find the value of k

k=\frac{y}{x}

substitute

k=\frac{18}{-30}

Simplify

Divide by 6 both numerator and denominator

k=-\frac{3}{5}

4 0
3 years ago
What percent of 75 is 15 <br><br> rebember to wright answer in percent form
mel-nik [20]

Answer:

20%

Step-by-step explanation:

3 0
2 years ago
Read 2 more answers
Find the measures of
Hatshy [7]
X= 26 y=26

As 130+88=308
360-308=52
52/2=26
The two sides are equal so they would be both 26
5 0
3 years ago
Other questions:
  • Column A
    6·2 answers
  • I need help with estimating and 920,026-535,722
    13·2 answers
  • Pls show work. 3.14 for pi
    15·1 answer
  • 6.493 rounded to the hundredths
    14·2 answers
  • What value of x is in the solution set of 2(3x – 1) = 4x – 6?<br><br> 0 -10<br> -5<br> -3<br> -1
    10·1 answer
  • 2. Write the point-slope form of the equation of the line through the given point with the given slope. a. Point= (5,3), slope=
    12·1 answer
  • Which two numbers on the number line have an absolute value of 4?
    14·1 answer
  • Please help with this question!
    6·1 answer
  • In ΔABC, the measure of ∠C=90°, the measure of ∠A=64°, and AB = 2.7 feet. Find the length of BC to the nearest tenth of a foot.
    15·2 answers
  • 9x + 9x − 21 = 33 <br><br> Please solve for x C:
    11·2 answers
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!