1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
aev [14]
2 years ago
12

Define the double factorial of n, denoted n!!, as follows:n!!={1⋅3⋅5⋅⋅⋅⋅(n−2)⋅n} if n is odd{2⋅4⋅6⋅⋅⋅⋅(n−2)⋅n} if n is evenand (

−1)!! =0!! =1.Find the radius of convergence for the given power series.[(8^n*n!*(3n+3)!*(2n)!!)/(2^n*[(n+9)!]^3*(4n+3)!!)]*(8x+6)^n
Mathematics
1 answer:
tekilochka [14]2 years ago
4 0

Answer:

Radius of convergence of power series is \lim_{n \to \infty}\frac{a_{n}}{a_{n+1}}=\frac{1}{108}

Step-by-step explanation:

Given that:

n!! = 1⋅3⋅5⋅⋅⋅⋅(n−2)⋅n        n is odd

n!! = 2⋅4⋅6⋅⋅⋅⋅(n−2)⋅n       n is even

(-1)!! = 0!! = 1

We have to find the radius of convergence of power series:

\sum_{n=1}^{\infty}[\frac{8^{n}n!(3n+3)!(2n)!!}{2^{n}[(n+9)!]^{3}(4n+3)!!}](8x+6)^{n}\\\\\sum_{n=1}^{\infty}[\frac{8^{n}n!(3n+3)!(2n)!!}{2^{n}[(n+9)!]^{3}(4n+3)!!}]2^{n}(4x+3)^{n}\\\\\sum_{n=1}^{\infty}[\frac{8^{n}n!(3n+3)!(2n)!!}{[(n+9)!]^{3}(4n+3)!!}](x+\frac{3}{4})^{n}\\

Power series centered at x = a is:

\sum_{n=1}^{\infty}c_{n}(x-a)^{n}

\sum_{n=1}^{\infty}[\frac{8^{n}n!(3n+3)!(2n)!!}{2^{n}[(n+9)!]^{3}(4n+3)!!}](8x+6)^{n}\\\\\sum_{n=1}^{\infty}[\frac{8^{n}n!(3n+3)!(2n)!!}{2^{n}[(n+9)!]^{3}(4n+3)!!}]2^{n}(4x+3)^{n}\\\\\sum_{n=1}^{\infty}[\frac{8^{n}4^{n}n!(3n+3)!(2n)!!}{[(n+9)!]^{3}(4n+3)!!}](x+\frac{3}{4})^{n}\\

a_{n}=[\frac{8^{n}4^{n}n!(3n+3)!(2n)!!}{[(n+9)!]^{3}(4n+3)!!}]\\\\a_{n+1}=[\frac{8^{n+1}4^{n+1}n!(3(n+1)+3)!(2(n+1))!!}{[(n+1+9)!]^{3}(4(n+1)+3)!!}]\\\\a_{n+1}=[\frac{8^{n+1}4^{n+1}(n+1)!(3n+6)!(2n+2)!!}{[(n+10)!]^{3}(4n+7)!!}]

Applying the ratio test:

\frac{a_{n}}{a_{n+1}}=\frac{[\frac{32^{n}n!(3n+3)!(2n)!!}{[(n+9)!]^{3}(4n+3)!!}]}{[\frac{32^{n+1}(n+1)!(3n+6)!(2n+2)!!}{[(n+10)!]^{3}(4n+7)!!}]}

\frac{a_{n}}{a_{n+1}}=\frac{(n+10)^{3}(4n+7)(4n+5)}{32(n+1)(3n+4)(3n+5)(3n+6)+(2n+2)}

Applying n → ∞

\lim_{n \to \infty}\frac{a_{n}}{a_{n+1}}= \lim_{n \to \infty}\frac{(n+10)^{3}(4n+7)(4n+5)}{32(n+1)(3n+4)(3n+5)(3n+6)+(2n+2)}

The numerator as well denominator of \frac{a_{n}}{a_{n+1}} are polynomials of fifth degree with leading coefficients:

(1^{3})(4)(4)=16\\(32)(1)(3)(3)(3)(2)=1728\\ \lim_{n \to \infty}\frac{a_{n}}{a_{n+1}}=\frac{16}{1728}=\frac{1}{108}

You might be interested in
Percentage of words starting with T
Mkey [24]
Do what the hint says lol
4 0
2 years ago
Determine the quadratic equation for which the zeros are 1/3 and 5/2
Darya [45]

Answer:

y = 3(x2 – 7) = 3x2 – 21

Step-by-step explanation:

6 0
3 years ago
What is greater one inch or one centimeter
maria [59]
One inch is greater than one centimeter
5 0
3 years ago
Read 2 more answers
Una persona asegura que su casa tiene forma rectangular y que el perímetro de la misma es de 18 m y que además, su área es de 21
leva [86]

Considerando las fórmulas para el perímetro y el área de un rectángulo, hay que se chega en una <u>eccuación cuadrática sin solución</u>, o sea, las medidas no son posibles y la persona estaba mintiendo.

<h3>¿Cuál es la fórmula para el perímetro y el área de un rectángulo?</h3>

Considerando que las dimensiones son l y w, hay que:

  • El perímetro es: P = 2(l + w).
  • El área es: A = lw.

El <u>perímetro es de 18 m</u>, o sea:

2(l + w) = 18

l + w = 9

l = 9- w.

El <u>área es de 21 m²</u>, o sea:

lw = 21

(9- w)w = 21

-w² + 9 - 21 = 0

w² - 9w + 21 = 0

El discriminante es dado por:

D = 9² - 4 x 1 x 21 = -3.

El discriminante negativo implica que la <u>eccuación cuadrática no tiene solución</u>, o sea, las medidas no son posibles y la persona estaba mintiendo.

Puede-se aprender más a cerca de el perímetro y el área de un rectángulo en brainly.com/question/26475963

#SPJ1

4 0
1 year ago
The conversion of ammonium cyanide to urea is a second-order reaction. This means that the concentration C of ammonium cyanide a
sergejj [24]

Answer:

your answer could be A

Step-by-step explanation:

6 0
3 years ago
Other questions:
  • Kristin drew a triangle with tow congruent sides and one obtuse angle.whitch term accurately describes the triangle
    14·2 answers
  • a stocks starting price per share is $51.47 at the beginning of the week. During the week, the price changes by gaining $1.22, t
    7·1 answer
  • Radhika borrowed Rs.12000 from her friends. Out of which Rs.4000 were borrowed at 18% and the remaining at 15% rate of interest
    15·1 answer
  • If I paid $9.00 for 4 lb of candies, how much candies can I buy for $12.00?
    14·1 answer
  • The nicotine content in a single cigarette of a particular brand has a distribution with mean 0.4 mg and standard deviation 0.1
    11·1 answer
  • Convert 0.0008 as a fraction in its simplest form​
    5·2 answers
  • PLS HELP!!
    14·2 answers
  • what is the answer to this problem: A(-4,-5), B(-2,-3), C(4,-3), D(6,-2), E(6,6), F(-1,6), G(-4,2). Find the length of BC.
    12·1 answer
  • Someone plz help me :(
    5·2 answers
  • Circles can be found along the Gambia
    14·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!