Answer:
It is ................................................................. 1
Step-by-step explanation:
Answer:
C. 2 times the number of pages in the book
Explanation:
The number of pages of the book may vary or can change depending on the book
Answer:
Step-by-step explanation:
Suppose, on the contrary, a and b are both odd integers, that is:
m and n being some integers numbers.
This way you have to:
![a^{2}-3b^{2}=(2n+1)^2-3(2m+1)^2=(4n^2+4n+1)-3(4m^2+4m+1)\\\\a^{2}-3b^{2}=4(n^2-3m^2+n-3m)-2=4(n(n+1)-3m(m+1))-2](https://tex.z-dn.net/?f=a%5E%7B2%7D-3b%5E%7B2%7D%3D%282n%2B1%29%5E2-3%282m%2B1%29%5E2%3D%284n%5E2%2B4n%2B1%29-3%284m%5E2%2B4m%2B1%29%5C%5C%5C%5Ca%5E%7B2%7D-3b%5E%7B2%7D%3D4%28n%5E2-3m%5E2%2Bn-3m%29-2%3D4%28n%28n%2B1%29-3m%28m%2B1%29%29-2)
The last expression cannot be divisible by 4 since 2 is not divisible by 4. The previous conclusion leads to a contradiction, which was generated from the assumption that a and b were both odd integers. In conclusion, at least one of the two a and b should be an even integer
Answer:
The options 2√20 and 4*5^(1/2) and 3*5^(1/2) + 5^(1/2) are the only expressions that are equivalent to 4√5
Step-by-step explanation:
We will factorise and simplify each term to get 4√5 in the end:
a) 2√20
2√5*4
2√5√4
2*2√5 Because √4 = 2
4√5
b)6^1/2 +5^1/2
√6 + √5
√2√3 + √5
c) 3*5^(1/2) + 5^(1/2)
3*√5 + √5
√5 (3*1 + 1)
√5 (3 + 1)
√5 (4)
4√5
d) 4*5^(1/2)
4√5 Because any integer with power 1/2 = √
e) 2√10
2√5*2
2√5√2
f) 3*5^(1/2)
3√5
Answer:
![\frac{4\sqrt{15} +8\sqrt{2}+5\sqrt{3} +2\sqrt{10} }{7}](https://tex.z-dn.net/?f=%5Cfrac%7B4%5Csqrt%7B15%7D%20%2B8%5Csqrt%7B2%7D%2B5%5Csqrt%7B3%7D%20%2B2%5Csqrt%7B10%7D%20%20%20%7D%7B7%7D)
Step-by-step explanation:
![\frac{4+\sqrt{ 5}}{\sqrt{15}-\sqrt{8} }](https://tex.z-dn.net/?f=%5Cfrac%7B4%2B%5Csqrt%7B%205%7D%7D%7B%5Csqrt%7B15%7D-%5Csqrt%7B8%7D%20%20%7D)
To rationalize the above fraction multiple both numerator and denominator by the conjugate of its denominator.
![\frac{4+\sqrt{ 5}}{\sqrt{15}-\sqrt{8} }*\frac{\sqrt{15}+\sqrt{8} }{\sqrt{15} +\sqrt{8} }](https://tex.z-dn.net/?f=%5Cfrac%7B4%2B%5Csqrt%7B%205%7D%7D%7B%5Csqrt%7B15%7D-%5Csqrt%7B8%7D%20%20%7D%2A%5Cfrac%7B%5Csqrt%7B15%7D%2B%5Csqrt%7B8%7D%20%20%7D%7B%5Csqrt%7B15%7D%20%2B%5Csqrt%7B8%7D%20%7D)
We can simplify √8 like this :
√8 = √4 × √2
√8 =<u> 2√2</u>
<u>Let us rationalize the above fraction now.</u>
![\frac{4+\sqrt{ 5}}{\sqrt{15}-\sqrt{8} }*\frac{\sqrt{15}+\sqrt{8} }{\sqrt{15} +\sqrt{8} }\\ \\\\\frac{(4+\sqrt{ 5})}{(\sqrt{15}-\sqrt{8}) }*\frac{(\sqrt{15}+2\sqrt{2} ) }{(\sqrt{15} +\sqrt{8})}](https://tex.z-dn.net/?f=%5Cfrac%7B4%2B%5Csqrt%7B%205%7D%7D%7B%5Csqrt%7B15%7D-%5Csqrt%7B8%7D%20%20%7D%2A%5Cfrac%7B%5Csqrt%7B15%7D%2B%5Csqrt%7B8%7D%20%20%7D%7B%5Csqrt%7B15%7D%20%2B%5Csqrt%7B8%7D%20%7D%5C%5C%20%5C%5C%5C%5C%5Cfrac%7B%284%2B%5Csqrt%7B%205%7D%29%7D%7B%28%5Csqrt%7B15%7D-%5Csqrt%7B8%7D%29%20%20%7D%2A%5Cfrac%7B%28%5Csqrt%7B15%7D%2B2%5Csqrt%7B2%7D%20%29%20%20%7D%7B%28%5Csqrt%7B15%7D%20%2B%5Csqrt%7B8%7D%29%7D)
<em>Solve the brackets and roots.</em>
![\frac{4(\sqrt{15}+2\sqrt{2})+\sqrt{5} (\sqrt{15} +2\sqrt{2}) }{\sqrt{ 15} * \sqrt{15} - \sqrt{8} * \sqrt{8} } }\\\\\\\frac{4\sqrt{15} +8\sqrt{2}+\sqrt{75}+2\sqrt{10} }{15-8}](https://tex.z-dn.net/?f=%5Cfrac%7B4%28%5Csqrt%7B15%7D%2B2%5Csqrt%7B2%7D%29%2B%5Csqrt%7B5%7D%20%20%28%5Csqrt%7B15%7D%20%2B2%5Csqrt%7B2%7D%29%20%7D%7B%5Csqrt%7B%2015%7D%20%2A%20%5Csqrt%7B15%7D%20%20-%20%5Csqrt%7B8%7D%20%2A%20%5Csqrt%7B8%7D%20%20%20%7D%20%7D%5C%5C%5C%5C%5C%5C%5Cfrac%7B4%5Csqrt%7B15%7D%20%2B8%5Csqrt%7B2%7D%2B%5Csqrt%7B75%7D%2B2%5Csqrt%7B10%7D%20%20%20%7D%7B15-8%7D)
<em>Simplify the roots.</em>
√75 = √25 × √3
√75 =<u> 5√3</u>
<u />
![\frac{4\sqrt{15} +8\sqrt{2}+\sqrt{75}+2\sqrt{10} }{15-8}\\\\\\\frac{4\sqrt{15} +8\sqrt{2}+5\sqrt{3} +2\sqrt{10} }{7}](https://tex.z-dn.net/?f=%5Cfrac%7B4%5Csqrt%7B15%7D%20%2B8%5Csqrt%7B2%7D%2B%5Csqrt%7B75%7D%2B2%5Csqrt%7B10%7D%20%20%20%7D%7B15-8%7D%5C%5C%5C%5C%5C%5C%5Cfrac%7B4%5Csqrt%7B15%7D%20%2B8%5Csqrt%7B2%7D%2B5%5Csqrt%7B3%7D%20%2B2%5Csqrt%7B10%7D%20%20%20%7D%7B7%7D)