Answer:
Hence, the wavelength of the photon associated is 1282 nm.
Explanation:
The pH a 0.25 m solution of C₆H₅NH₂ is equal to 3.13.
<h3>How do we calculate pH of weak base?</h3>
pH of the weak base will be calculate by using the Henderson Hasselbalch equation as:
pH = pKb + log([HB⁺]/[B])
pKb = -log(1.8×10⁻⁶) = 5.7
Chemical reaction for C₆H₅NH₂ is:
C₆H₅NH₂ + H₂O → C₆H₅NH₃⁺ + OH⁻
Initial: 0.25 0 0
Change: -x x x
Equilibrium: 0.25-x x x
Base dissociation constant will be calculated as:
Kb = [C₆H₅NH₃⁺][OH⁻] / [C₆H₅NH₂]
Kb = x² / 0.25 - x
x is very small as compared to 0.25, so we neglect x from that term and by putting value of Kb, then the equation becomes:
1.8×10⁻⁶ = x² / 0.25
x² = (1.8×10⁻⁶)(0.25)
x = 0.67×10⁻³ M = [C₆H₅NH₃⁺]
On putting all these values on the above equation of pH, we get
pH = 5.7 + log(0.67×10⁻³/0.25)
pH = 3.13
Hence pH of the solution is 3.13.
To know more about Henderson Hasselbalch equation, visit the below link:
brainly.com/question/13651361
#SPJ4
Answer:
the simplest answer is it loses the water (decahydrate) because it evaporates
Answer:
6.02 × 10²³ atoms
Explanation:
The number 6.02 × 10²³ is called Avogadro number. It is the number of atoms, ions and molecules in one gram atoms of an element, one gram ions of substance and one gram molecule of a compound.
For example:
32 g of oxygen = one mole = 6.02 × 10²³ atoms O.
1.008 g of hydrogen = one mole = 6.02 × 10²³ atoms of H.
or
18 g of H₂O =one mole = 6.02 × 10²³ molecules of H₂O
44 g of CO₂ = one mole = 6.02 × 10²³ molecules of CO₂
or
62 g of NO₃⁻ = one mole of NO₃⁻ = 6.02 × 10²³ ions of NO₃⁻