The bubbles that were observed after the mixing of the two substances is one of the products of the reaction. It is the carbon dioxide that is produced. To determine the mass of this gas produced, we need to remember the Law of conservation of mass where mass cannot be created or destroyed. With this, we can say that the total mass that goes in a process should be equal to the mass that is goes out of the process no matter what the reaction is. We do as follows:
Mass of reactants = mass of products
11.00 + 44.55 = 51.04 + mass of carbon dioxide
mass of carbon dioxide = 4.51 g
Here you go! There are 0.9307 moles in 123.0 g of the compound. I solved this by using a fence post method. I calculated the number of grams in one mol of (NH4)2 SO4 and got 132.16.
I did this by finding the atomic mass of each element on the periodic table (my work is in the color blue for this step)
After that, i divided the given mass by the mass of one mol of the compound.
The answer is 0.9307 moles!! I hope this helped you! :))
Answer:
(a) (i) All the elements of a group have similar chemical properties because they have same no. of valence electrons in their outermost shell. (ii) All the elements of a period have different chemical properties because they have different no. of valence electrons in their atoms.
Answer:
A
Explanation:
CH3CH2COOH- Propanoic Acid