Answer:
1.7 mL
Explanation:
<em>A chemist must prepare 550.0 mL of hydrochloric acid solution with a pH of 1.60 at 25 °C. He will do this in three steps: Fill a 550.0 mL volumetric flask about halfway with distilled water. Measure out a small volume of concentrated (8.0 M) stock hydrochloric acid solution and add it to the flask. Fill the flask to the mark with distilled water. Calculate the volume of concentrated hydrochloric acid that the chemist must measure out in the second step. Round your answer to 2 significant digits.</em>
Step 1: Calculate [H⁺] in the dilute solution
We will use the following expresion.
pH = -log [H⁺]
[H⁺] = antilog - pH = antilog -1.60 = 0.0251 M
Since HCl is a strong monoprotic acid, the concentration of HCl in the dilute solution is 0.0251 M.
Step 2: Calculate the volume of the concentrated HCl solution
We want to prepare 550.0 mL of a 0.0251 M HCl solution. We can calculate the volume of the 8.0 M solution using the dilution rule.
C₁ × V₁ = C₂ × V₂
V₁ = C₂ × V₂/C₁
V₁ = 0.0251 M × 550.0 mL/8.0 M = 1.7 mL

Explanation:
the bottom number would be 54. This is because you add one to 53 to make it 54 and you add 0 to 138.
CrO and Cr₂O₃ make up the simplest chromium oxide formula.
What name does Cr₂O₃ use?
- Chromium oxide (Cr₂O₃)sometimes referred to as chromium sesquioxide or chromic oxide, is a compound in which chromium is oxidized to a +3 state. Sodium dichromate is calcined with either carbon or sulfur to produce it.
- Eskolaite, a mineral that bears the name of the Finnish geologist Pentti Eskola, is a kind of chromium oxide green that may be found in nature. The metallic glassy green surface of this unusual material has an unsettling moss-like look that may be used to conceal oneself in the environment.
- Studies on humans have conclusively shown that chromium (VI) breathed is a potential carcinogen, increasing the likelihood of developing lung cancer. According to animal studies, chromium (VI) exposure by inhalation can result in lung cancers.
Learn more about chromium here:
brainly.com/question/15588080
#SPJ4
Answer:
This snip might help...it depends :)
Explanation:
Answer:
True => ΔH°f for C₆H₆ = 49 Kj/mole
Explanation:
See Thermodynamic Properties Table in appendix of most college level general chemistry texts. The values shown are for the standard heat of formation of substances at 25°C. The Standard Heat of Formation of a substance - by definition - is the amount of heat energy gained or lost on formation of the substance from its basic elements in their standard state. C₆H₆(l) is formed from Carbon and Hydrogen in their basic standard states. All elements in their basic standard states have ΔH°f values equal to zero Kj/mole.