It should be noted that when a reaction is occurring in a test tube, heat transmitted to the surroundings when Molecules collide with the glass, and the glass molecules then transmit that energy to the outside.
<h3>What is heat?</h3>
Heat can be regarded as a form of energy which is energy that is been transferred as a result of difference in temperature.
In the case above, Molecules collide with the glass, and the glass molecules then transmit that energy to the outside which is an exothermic reaction.
Therefore, option B is correct.
Learn more about heat at:
brainly.com/question/12072129
<h2>
Hello!</h2>
The answer is: Charle's Law.
<h2>
Why?</h2>
The law that states that the volume and absolute temperature of a fixed quantity of gas (ideal gas) are proportional under constant pressure is the Charle's Law, also known as the law of volumes.
The law describes how a gas kept under constant pressure tends to expand when the temperature increases and it's described by the following equation:

Where,

Also, to describe the relationship between two differents volumes at different temperatures, we have:

Where,

Have a nice day!
Answer:
Explanation:
During titration indicators are often used to identify chemical changes between reacting species.
For colorless solutions in which no noticeable changes can easily be seen, indicators are the best bet. Most titration processes involves a combination of acids and bases to an end point.
Indicators are substances whose color changes to signal the end of an acid-base reaction. Examples are methyl orange, methyl red, phenolphthalein, litmus, cresol red, cresol green, alizarin R3, bromothymol blue and congo red.
Most of these indicators have various colors when chemical changes occur.
Also, there are heat changes that accompanies most of these reactions. These are also indicators of chemical changes.
You should read up on Proust's law, better known as the Law of Definite Proportions. This is a chemical law that defines your question more generally, on why the ratio of elements and ions are always fixed.
Basically, this compound Magnesium(II) Chloride is MgCl2 because it has the same number of protons, neutrons, and electrons all the way. This defines the properties of the compound or atom.
Answer 1:
Equilibrium constant (K) mathematically expressed as the ratio of the concentration of products to concentration of reactant. In case of gaseous system, partial pressure is used, instead to concentration.
In present case, following reaction is involved:
2NO2 ↔ 2NO + O2
Here, K =
![\frac{[PNO]^2[O2]}{[PNO2]^2}](https://tex.z-dn.net/?f=%20%5Cfrac%7B%5BPNO%5D%5E2%5BO2%5D%7D%7B%5BPNO2%5D%5E2%7D%20)
Given: At equilibrium, <span>PNO2= 0.247 atm, PNO = 0.0022atm, and PO2 = 0.0011 atm
</span>
Hence, K =
![\frac{[0.0022]^2[0.0011]}{[0.247]^2}](https://tex.z-dn.net/?f=%20%5Cfrac%7B%5B0.0022%5D%5E2%5B0.0011%5D%7D%7B%5B0.247%5D%5E2%7D%20)
= 8.727 X 10^-8
Thus, equilibrium constant of reaction = 8.727 X 10^-8
.......................................................................................................................
Answer 2:
Given: <span>PNO2= 0.192 atm, PNO = 0.021 atm, and PO2 = 0.037 atm.
Therefore, Reaction quotient = </span>
![\frac{[PNO]^2[O2]}{[PNO2]^2}](https://tex.z-dn.net/?f=%20%5Cfrac%7B%5BPNO%5D%5E2%5BO2%5D%7D%7B%5BPNO2%5D%5E2%7D%20)
=
![\frac{[0.021]^2[0.037]}{[0.192]^2}](https://tex.z-dn.net/?f=%20%5Cfrac%7B%5B0.021%5D%5E2%5B0.037%5D%7D%7B%5B0.192%5D%5E2%7D%20)
= 4.426 X 10^-4.
Here, Reaction quotient > Equilibrium constant.
Hence, <span>the reaction need to go to
reverse direction to reattain equilibrium </span>