Answer:
B
Explanation:
its an acidic oxide, it disolves in water to form carbonic acid which is an acid
Answer:
ΔH =
Explanation:
In a calorimeter, when there is a complete combustion within the calorimeter, the heat given off in the combustion is used to raise the thermal energy of the water and the calorimeter.
The heat transfer is represented by
= 
where
= the internal heat gained by the whole calorimeter mass system, which is the water, as well as the calorimeter itself.
= the heat of combustion
Also, we know that the total heat change of the any system is
ΔH = ΔQ + ΔW
where
ΔH = the total heat absorbed by the system
ΔQ = the internal heat absorbed by the system which in this case is 
ΔW = work done on the system due to a change in volume. Since the volume of the calorimeter system does not change, then ΔW = 0
substituting into the heat change equation
ΔH =
+ 0
==> ΔH =
We can use two equations for this problem.<span>
t1/2 = ln
2 / λ = 0.693 / λ
Where t1/2 is the half-life of the element and λ is
decay constant.
20 days = 0.693 / λ
λ = 0.693 / 20 days
(1)
Nt = Nο eΛ(-λt) (2)
Where Nt is atoms at t time, No is the initial amount of substance, λ is decay constant and t is the time
taken.
t = 40 days</span>
<span>No = 200 g
From (1) and (2),
Nt = 200 g eΛ(-(0.693 / 20 days) 40 days)
<span>Nt = 50.01 g</span></span><span>
</span>Hence, 50.01 grams of isotope will remain after 40 days.
<span>
</span>
Answer:
0.21mol Ar (g)
Explanation:
To convert from litres to moles at STP we must divide the amount of litres by 22.4.
4.7 / 22.4 = 0.21mol Ar (g)
Answer : The correct option is, (D) 
Explanation :
(A) 
This reaction is a double displacement reaction in which the cation and anion of two reactants are exchange their places to give two different products.
(B) 
This reaction is a decomposition reaction in which the larger molecule decomposes to give two or more products.
(C) 
This reaction is a neutralization reaction in which an acid and a base react to give a salt and water as a product.
(D) 
This reaction is a redox reaction in which the oxidation and reduction reaction occur simultaneously.
Oxidation reaction is the reaction in which a substance looses its electrons. In this oxidation state increases.
Reduction reaction is the reaction in which a substance gains electrons. In this oxidation state decreases.
In this reaction, magnesium shows oxidation due to change in oxidation number from (0) to (+2) and hydrogen shows reduction due to change in oxidation number from (-1) to (0).
Hence, the correct option is, (D)