Answer: Rate in terms of disappearance of
= ![-\frac{1d[NO]}{2dt}](https://tex.z-dn.net/?f=-%5Cfrac%7B1d%5BNO%5D%7D%7B2dt%7D)
Rate in terms of disappearance of
= ![-\frac{1d[Cl_2]}{1dt}](https://tex.z-dn.net/?f=-%5Cfrac%7B1d%5BCl_2%5D%7D%7B1dt%7D)
Rate in terms of appearance of
= ![\frac{1d[NOCl]}{2dt}](https://tex.z-dn.net/?f=%5Cfrac%7B1d%5BNOCl%5D%7D%7B2dt%7D)
Explanation:
Rate law says that rate of a reaction is directly proportional to the concentration of the reactants each raised to a stoichiometric coefficient determined experimentally called as order.

The rate in terms of reactants is given as negative as the concentration of reactants is decreasing with time whereas the rate in terms of products is given as positive as the concentration of products is increasing with time.
Rate in terms of disappearance of = ![-\frac{1d[NO]}{2dt}](https://tex.z-dn.net/?f=-%5Cfrac%7B1d%5BNO%5D%7D%7B2dt%7D)
Rate in terms of disappearance of = ![-\frac{1d[Cl_2]}{1dt}](https://tex.z-dn.net/?f=-%5Cfrac%7B1d%5BCl_2%5D%7D%7B1dt%7D)
Rate in terms of appearance of
= ![+\frac{1d[NOCl]}{2dt}](https://tex.z-dn.net/?f=%2B%5Cfrac%7B1d%5BNOCl%5D%7D%7B2dt%7D)
The average atomic mass of her sample is 114.54 amu
Let the 1st isotope be A
Let the 2nd isotope be B
From the question given above, the following data were obtained:
- Abundance of isotope A (A%) = 59.34%
- Mass of isotope A = 113.6459 amu
- Mass of isotope B = 115.8488 amu
- Abundance of isotope B (B%) = 100 – 59.34 = 40.66%
- Average atomic mass =?
The average atomic mass of the sample can be obtained as follow:

Thus, the average atomic mass of the sample is 114.54 amu
Learn more about isotope: brainly.com/question/25868336
Answer:
Atoms must have similar electronegativities in order to share electrons in a covalent bond.
Explanation:
Covalent bonding is one of the bondings that occurs between the atoms of elements. It is the bonding in which atoms share their valence electrons with one another. However, the ELECTRONEGATIVITY, which is the ability of an atom to be attracted to electrons play a major role in the formation of covalent bonds.
When atoms of different electronegativities combine, the more electronegative atom pulls more electrons towards itself, hence, an IONIC bond is formed. However, when the electronegativities of the atoms are similar, the sharing of their electrons becomes stronger. Hence, ATOMS MUST HAVE SIMILAR ELECTRONEGATIVITIES in order to share electrons in a covalent bond.
When an acid is neutralized by a base, that means moles of H+ = moles of OH-
moles of H+ = 0.5 M * 0.025 L HCl = 0.0125 moles H+
moles of OH- should be equal to 0.0125 moles, so
0.0125 moles = (x) * 0.025 L NaOH
x is the concentration of NaOH, which we want to find.
x = 0.5 M
The correct answer is C) 0.5 M.
Answer:
pH= 0.92
Explanation:
HNO3-> H^+ +NO3^-
HNO3 is a strong acid, so it fully dissociates
[HNO3] = 0.12M [H^+] = 0.12M
pH= -log[H^+]
pH=-log[.12] = 0.92
pH = 0.92