When we describe the energy of a particle as quantized, we mean that only certain values of energy are allowed. ... In this case, whenever we measure the particle's energy, we will find one of those values. If the particle is measured to have 4 Joules of energy, we also know how much energy the particle can gain or lose. Quantized energy means that the electrons can possess only certain discrete energy values; values between those quantized values are not permitted
HCI is one of the most common acids out of the following
Answer:
Yes, but it must be kept at that value and do not let it to decrease more.
Explanation:
Hello.
In this case, in order to substantiate whether the cabin meet the federal standards, we need to convert the 500 mmHg to atm and compare the result with 0.72 atm by knowing that 1 atm equals 760 mmHg:

Thus, since 0.66 atm is 0.06 atm away from the federal standard we can infer that it may meet the federal standard, however, it would not be recommended to let the pressure decrease more than that.
Answer:
p3=0.36atm (partial pressure of NOCl)
Explanation:
2 NO(g) + Cl2(g) ⇌ 2 NOCl(g) Kp = 51
lets assume the partial pressure of NO,Cl2 , and NOCl at eequilibrium are P1 , P2,and P3 respectively
![Kp=\frac{[NOCl]^{2} }{[NO]^{2} [Cl_2] }](https://tex.z-dn.net/?f=Kp%3D%5Cfrac%7B%5BNOCl%5D%5E%7B2%7D%20%7D%7B%5BNO%5D%5E%7B2%7D%20%5BCl_2%5D%20%7D)
![Kp=\frac{[p3]^{2} }{[p1]^{2} [p2] }](https://tex.z-dn.net/?f=Kp%3D%5Cfrac%7B%5Bp3%5D%5E%7B2%7D%20%7D%7B%5Bp1%5D%5E%7B2%7D%20%5Bp2%5D%20%7D)
p1=0.125atm;
p2=0.165atm;
p3=?
Kp=51;
On solving;
p3=0.36atm (partial pressure of NOCl)