They enable us to dig deeper into the electron configurations by making us focus on electrons' quantum nature
Answer:
Both the third and fifth answers are correct
<span>d. The parallaxes beyond a few thousand light years are
too small to be measured with common instruments.
I'm not sure that parallax can even be used out to a few
thousand light years.
The NEAREST star to Earth has the BIGGEST parallax.
The star is Alpha Centauri. It's only 4 light years away
from us, and its parallax is 0.000206 of a degree !
I have no idea how astronomers can measure angles
so small ... and that's the BIGGEST parallax angle of
ANY star.</span>
Answer:
0.21 lunar month
Explanation:
the radius of moon = r₁
time period of the moon = T₁ = 1 lunar month
The radius of the satellite = 0.35 r₁
Time period of satellite
The relation between time period and radius

now,



T₂ = 0.21 lunar month
hence, the time period of revolution of satellite is equal to 0.21 lunar month