Answer:
a) w = 7.27 * 10^-5 rad/s
b) v1 = 463.1 m/s
c) v1 = 440.433 m/s
Explanation:
Given:-
- The radius of the earth, R = 6.37 * 10 ^6 m
- The time period for 1 revolution T = 24 hrs
Find:
What is the earth's angular speed?
What is the speed of a point on the equator?
What is the speed of a point on the earth's surface located at 1/5 of the length of the arc between the equator and the pole, measured from equator?
Solution:
- The angular speed w of the earth can be related with the Time period T of the earth revolution by:
w = 2π / T
w = 2π / 24*3600
w = 7.27 * 10^-5 rad/s
- The speed of the point on the equator v1 can be determined from the linear and rotational motion kinematic relation.
v1 = R*w
v1 = (6.37 * 10 ^6)*(7.27 * 10^-5)
v1 = 463.1 m/s
- The angle θ subtended by a point on earth's surface 1/5 th between the equator and the pole wrt equator is.
π/2 ........... s
x ............ 1/5 s
x = π/2*5 = 18°
- The radius of the earth R' at point where θ = 18° from the equator is:
R' = R*cos(18)
R' = (6.37 * 10 ^6)*cos(18)
R' = 6058230.0088 m
- The speed of the point where θ = 18° from the equator v2 can be determined from the linear and rotational motion kinematic relation.
v2 = R'*w
v2 = (6058230.0088)*(7.27 * 10^-5)
v2 = 440.433 m/s
In several of the questions you've posted during the past day, we've already said that a wave with larger amplitude carries more energy. That idea is easy to apply to this question.
Answer:
17. NADH has a molar extinction coefficient of 6200 M2 cm at 340 nm. Calculate the molar concentration of NADH required to obtain an absorbance of 0.1 at 340 nm in a 1-cm path length cuvette. 18. A sample with a path length of 1 cm absorbs 99.0% of the incident light at a wavelength of 274 nm, measured with respect to an appropriate solvent blank. Tyrosine is known to be the only chromophore present in the sample that has significant absorption at 274 nm. Calculate the molar concentration of tyrosine in the sample.
Explanation:
The tension in the two chains T1 and T2 is 676.65 N and 542.53 N respectively.
<h3>Principle of moments</h3>
The Principle of Moments states that when a body is in equip, the sum of clockwise moment about a point is equal to the sum of anticlockwise moment about the same point.
The formula for calculating moment is given below:
- Moment = Force × perpendicular distance from the pivot
<h3>Calculating the tension in the chains</h3>
From the principle of moments:
Let tension in chain 1 be T1 and tension in chain 2 be T2.
T1 + T2 = 150 + 650 + 419
T1 + T2 =1219
Taking all distances from chain 1,
Sum of Moments = 0
419 × 0.5 + 150 × 0.85 + 650 × 0.9 = T2 × 1.7
T2 = 922/17
T2 = 542.35 N
Then, T1 = 1219 - 542.35
T1 = 676.65 N
Therefore, the tension in the two chains T1 and T2 is 676.65 N and 542.53 N respectively.
Learn more about tension and moments at: brainly.com/question/187404
brainly.com/question/14303536
Answer:
C. The block and the sphere would have the same weight.
Explanation:
If both the block and the sphere weigh 7 kilograms then they have the same weight. They may look different, but they both weigh 7 kilograms.