Answer:
1626.4 N
Explanation:
Given that a 82 kg man, at rest, drops from a diving board 3.0 m above the surface of the water and comes to rest 0.55 s after reaching the water. What force does the water exert on him?
The parameters to be considered are:
Distance S = 3m
Time t = 0.55s
Since the man started from rest, initial velocity u = 0
Using second equation of motion
S = Ut + 1/2at^2
3 = 1/2 × a × 0.55^2
3 = 1/2 × a × 0.3025
a = 3/ 0.15125
a = 19.83 m/s^2
Force = mass × acceleration
Force = 82 × 19.83
Force = 1626.4 N
Therefore, the force that water exerted on him is 1626.4 N
Answer:
1) joule
2) 
3) 
Explanation:
1) Luminosity is the <u>amount of light emitted</u> (measured in Joule) by an object in a unit of<u> time</u> (measured in seconds). Hence in SI units luminosity is expressed as joules per second (
), which is equal to Watts (
).
This amount of light emitted is also called radiated electromagnetic power, and when this is measured in relation with time, the result is also called radiant power emitted by a light-emitting object.
Therefore, if we want to calculate luminosity the Joule as a unit will be used.
2) Work
is expressed as force
multiplied by the distane
:
Where force has units of
and distance units of
.
If we input the units we will have:
This is 1Joule (
) in the SI system, which is also equal to 
3) The formula to calculate the percent error is:

Where:
is the experimental value
is the accepted value

This is the percent error
If you take a fluid (i.e. air or water) and heat it, the portion that is heated usually expands. The same mass takes up more volume and as a consequence the heated portion becomes less dense than the portion that is<span><span> not heated.</span> </span>
Infrared, visible light, then ultraviolet. Infrared is light that the human eye can not see and visible light is clearly light we can see then ultraviolet is has such a high frequency we can't see it either.
Answer:
wallah i don't understand anything with my stoopid brain
Explanation: