Specific Gravity of the fluid = 1.25
Height h = 28 in
Atmospheric Pressure = 12.7 psia
Density of water = 62.4 lbm/ft^3 at 32F
Density of the Fluid = Specific Gravity of the fluid x Density of water = 1.25 x 62.4
Density of the Fluid p = 78 lbm/ft^3
Difference in pressure as we got the differential height, dP = p x g x h dP = (78 lbm/ft^3) x (32.174 ft/s^2) x (28/12 ft) [ 1 lbf / 32.174 ft/s^2] [1 ft^2 /
144in^2]
Difference in pressure = 1.26 psia
(a) Pressure in the arm that is at Higher
P = Atmospheric Pressure - Pressure difference = 12.7 - 1.26 = 11.44 psia
(b) Pressure in the tank that is at Lower
P = Atmospheric Pressure + Pressure difference = 12.7 + 1.26 = 13.96psia
Answer:
8.91 J
Explanation:
mass, m = 8.20 kg
radius, r = 0.22 m
Moment of inertia of the shell, I = 2/3 mr^2
= 2/3 x 8.2 x 0.22 x 0.22 = 0.265 kgm^2
n = 6 revolutions
Angular displacement, θ = 6 x 2 x π = 37.68 rad
angular acceleration, α = 0.890 rad/s^2
initial angular velocity, ωo = 0 rad/s
Let the final angular velocity is ω.
Use third equation of motion
ω² = ωo² + 2αθ
ω² = 0 + 2 x 0.890 x 37.68
ω = 8.2 rad/s
Kinetic energy,

K = 0.5 x 0.265 x 8.2 x 8.2
K = 8.91 J
Answer:
Max speed = 
Max acceleration = 
Explanation:
Given the description of period and amplitude, the SHM could be described by:

and its angular velocity can be calculated doing the derivative:

And therefore, the tangential velocity is calculated by multiplying this expression times the radius of the movement (3 m):
and is given in m/s.
Then the maximum speed is obtained when the cosine function becomes "1", and that gives:
Max speed = 
The acceleration is found from the derivative of the velocity expression, and therefore given by:

and the maximum of the function will be obtained when the sine expression becomes "-1", which will render:
Max acceleration = 
Answer:

Explanation:
The gravitational force exerted on the satellites is given by the Newton's Law of Universal Gravitation:

Where M is the mass of the earth, m is the mass of a satellite, R the radius of its orbit and G is the gravitational constant.
Also, we know that the centripetal force of an object describing a circular motion is given by:

Where m is the mass of the object, v is its speed and R is its distance to the center of the circle.
Then, since the gravitational force is the centripetal force in this case, we can equalize the two expressions and solve for v:

Finally, we plug in the values for G (6.67*10^-11Nm^2/kg^2), M (5.97*10^24kg) and R for each satellite. Take in account that R is the radius of the orbit, not the distance to the planet's surface. So
and
(Since
). Then, we get:

In words, the orbital speed for satellite A is 7667m/s (a) and for satellite B is 7487m/s (b).