Answer:
A wet body has a relatively high concentration of water. When this is transferred to a towel, the large surface area of the towel fabric distributes the water molecules over a much greater surface area, so the relative concentration is lower.
Answer:
7 meters, 2.8 meters
Explanation:
work done (nm) = force (n) * distance (m)
140= 20 * m
140/20 = m
m=7 meters
140= 50 * m
140/50 = m
m= 2.8 meters
Answer:
T = 0.003 s
(Period is written as T)
Explanation:
Period = time it takes for one wave to pass (measured in seconds)
frequency = number of cycles that occur in 1 second
(measured in Hz / hertz / 1 second)
Period : T
frequency : f
So, if we know that the frequency of a wave is 300 Hz, we can find the period of the wave from the relation between frequency and period
T =
f = 
to find the period (T) of this wave, we need to plug in the frequency (f) of 300
T = 
T = 0.00333333333
So, the period of a wave that has a frequency of 300 Hz is 0.003 s
[the period/T of this wave is 0.003 s]
Answer:
<em>B) The disturbance of particles in an area.</em>
Explanation:
<em>A wave involves transmission of energy from one place to another by the actual disturbance of the particles of the medium.</em>
<em />
<span>
In layman's term: </span>like charges don't attract while opposite charges do<span>electrostatic forces between point A( which is charged) and point B (which is also charged) are proportional to the charge of point A and point B. </span><span>there is also something else about this law that I don't quite remember.</span>
<span>___________________________________________________</span>
<span />Here is the formula:
<span>F = k x Q1 x Q2/d^<span>2</span></span>
<span>What the formula means:</span>
F=force between charges
Q1 and Q2= amount of charge
d=distance between these two charges
k= Coulombs constant (proportionally constant)
________________________________________________
I think that about covers it and hopefully this helped.