The person is at rest with respect to the car. So the best answer is:
c. the front seat of the car.
Answer:
Flow Rate = 80 m^3 /hours (Rounded to the nearest whole number)
Explanation:
Given
- Hf = head loss
- f = friction factor
- L = Length of the pipe = 360 m
- V = Flow velocity, m/s
- D = Pipe diameter = 0.12 m
- g = Gravitational acceleration, m/s^2
- Re = Reynolds's Number
- rho = Density =998 kg/m^3
- μ = Viscosity = 0.001 kg/m-s
- Z = Elevation Difference = 60 m
Calculations
Moody friction loss in the pipe = Hf = (f*L*V^2)/(2*D*g)
The energy equation for this system will be,
Hp = Z + Hf
The other three equations to solve the above equations are:
Re = (rho*V*D)/ μ
Flow Rate, Q = V*(pi/4)*D^2
Power = 15000 W = rho*g*Q*Hp
1/f^0.5 = 2*log ((Re*f^0.5)/2.51)
We can iterate the 5 equations to find f and solve them to find the values of:
Re = 235000
f = 0.015
V = 1.97 m/s
And use them to find the flow rate,
Q = V*(pi/4)*D^2
Q = (1.97)*(pi/4)*(0.12)^2 = 0.022 m^3/s = 80 m^3 /hours
The work done onto the car is 506,250 J
The work done on a system implies an increase in the internal energy of the system as a result of some forces acting on the system from the outside.
From the parameters given:
- The mass of the car = 1500 kg
- The initial speed = 30 m/s
- The final speed = 15 m/s
The work done onto the car refers to the change in the kinetic energy (i.e. ΔK.E)



= 506,250 J
Therefore, we can conclude that the work done on the car is 506,250 J
Learn more about work done here:
brainly.com/question/18762601
Your answer is B
Plz give brainliest and I will answer all your future questions
Two forces 3N and 4N act on a body in a direction due north From East, the equilibrant's angle is given by
.
<h3>What are equilibrium and resultant force?</h3>
The equilibrium force is the balanced force when the net force acting is zero and is the exact opposite of the consequent force. The resultant force is one single force replaced by numerous forces.
<h3>Briefing:</h3>
3N and 4N are the two forces pulling on a body.
The forces work along the North and the East, which are perpendicular to one another.
The resultant of the forces, which is provided by the equilibrant force,
R = √(3)²+(4)²
R = 5N
From East, the equilibrant's angle is given by

To know more about equilibrium force visit:
brainly.com/question/12582625
#SPJ9