Answer:
(a)0.531m/s
(b)0.00169
Explanation:
We are given that
Mass of bullet, m=4.67 g=
1 kg =1000 g
Speed of bullet, v=357m/s
Mass of block 1,
Mass of block 2,
Velocity of block 1,
(a)
Let velocity of the second block after the bullet imbeds itself=v2
Using conservation of momentum
Initial momentum=Final momentum







Hence, the velocity of the second block after the bullet imbeds itself=0.531m/s
(b)Initial kinetic energy before collision



Final kinetic energy after collision



Now, he ratio of the total kinetic energy after the collision to that before the collision
=
=0.00169
Answer:
Also, as stream depth increases, the hydraulic radius increases thereby making the stream more free flowing. Both of these factors lead to an increase in stream velocity. The increased velocity and the increased cross-sectional area mean that discharge increases.
I think it's A Tsunami. Or an Earthquake
Answer:
a) v, v
b) 2mv^2
c) Elastic collion
Explanation:
(a) The velocity of the second particle after the collision is (v2x,v2y)=(v,−v). From momentum conservation in x-direction
Here x, y represent direction.They are not variable. 1 and 2 represent before and after.
2vm=v1xm+v2xm, we find v1x=v.
From momentum conservation in y-direction
0 =v1ym+v2ym, we findv1y=v.
(b) By energy conservation principle
Before: K=1/2m(2v)^2=2mv^2.
After: K=1/2m(v^2(1x)+v^2(1y))+12m(v22x+v22y)=2mv^2
(c) The collision is elastic