Let the data is as following
mass of payload = "m"
mass of Moon = "M"
now we know that we place the payload from the position on the surface of moon to the position of 5r from the surface
So in this case we can say that change in the gravitational potential energy is equal to the work done to move the mass from one position to other
so it is given by

we know that


now from above formula


so above is the work done to move the mass from surface to given altitude
NO
The likelihood of reaching 40 miles per hour is very slim. Several factors are related to how quickly somebody can run, which is why only one person has ever run 28 miles per hour.Catch a sprinter smashing a speed record and they look like they could keep up with a car chase. 40 MPH: The fastest speed humans can run. The current fastest human in the world is Usain Bolt, who can run at nearly 28 miles per hour.Steve in Davis, Calif. So far, the fastest anyone has run is about 27½ miles per hour, a speed reached (briefly) by sprinter Usain Bolt just after the midpoint of his world-record 100-meter dash in 2009.
Find more about run :-brainly.com/question/17889385?referrer=searchResults
#SPJ4
Answer:
3 mA.
Explanation:
The following data were obtained from the question:
Resistor (R) = 500 Ω
Potential difference (V) = 1.5 V
Current (I) =.?
Using the ohm's law equation, we can obtain the current as follow:
V = IR
1.5 = I x 500
Divide both side by 500
I = 1.5 / 500
I = 3×10¯³ A.
Therefore, the current in the circuit is 3×10¯³ A.
Finally, we shall convert 3×10¯³ A to milliampere (mA).
This can be obtained as follow:
Recall:
1 A = 1000 mA
Therefore,
3×10¯³ A = 3×10¯³ × 1000 = 3 mA
Therefore, 3×10¯³ A is equivalent to 3 mA.
Thus, the current in mA flowing through the circuit is 3 mA.
Answer:
The recoil speed is 
Solution:
Wavelength of a blue-green photon, 
Now, the energy associated with the blue-green photon:

where
h = Planck's constant
C = speed of light ion vacuum


Also, we know that the recoil speed can be calculated by the KInetic energy which is equal to the Energy of the blue-green photon:

where
= velocity of Hydrogen atom
= mass of H-atom
Now,


