Given the mass of
=25.6 g
The molar mass of
=390.35g/mol
Converting mass of
to moles:

Converting mol
to mol S:

Converting mol S to atoms of S using Avogadro's number:
1 mol = 

Answer:
Standard free-energy change at
is 
Explanation:
Oxidation: 
Reduction: 
--------------------------------------------------------------------------------------
Overall: 
Standard cell potential, 
So, 
We know, standard free energy change at
(
): 
where, n is number of electron exchanged during cell reaction, 1F equal to 96500 C/mol
Here n = 2
So, 
Answer is: 1.29 grams <span>of solid formed.
</span>Chemical reaction: 2AgNO₃(aq) + K₂CrO₄(aq) → Ag₂CrO₄(s) + 2KNO₃(aq).
n(AgNO₃) = c(AgNO₃) · V(AgNO₃).
n(AgNO₃) = 0.220 M · 0.0351 L.
n(AgNO₃) = 0.0078 mol; limiting reactant.
n(K₂CrO₄) = 0.420 M · 0.052 L.
n(K₂CrO₄) = 0.022 mol.
From chemical reaction: n(AgNO₃) : n(Ag₂CrO₄) = 2 : 1.
n(Ag₂CrO₄) = 0.0078 mol ÷ 2.
n(Ag₂CrO₄) = 0.0039 mol.
m(Ag₂CrO₄) = 0.0039 mol · 331.73 g/mol.
m(Ag₂CrO₄) = 1.29 g.
The correct option is B.
Phenophtalein is an indicator that is usually used in acid base titration experiments. Indicators are substances that undergo distinct, observable changes when the pH of their solutions change. Indicators exhibit changing of colors depending on the pH of the solution in which they are found. They are usually weak bases and acid which are capable of partial dissociation and formation of ions when dissolved in water. There are different types of indicator and phenophtalein is one of them. Phenophtalein is colorless in acidic solution and pink in basic solutions.
The chemical contractor has to retrieve the chemical and a identification analysis would have to be conducted