Answer:
The elements become less reactive.
Explanation:
As we move from left to right across the periodic table the number of valance electrons in an atom increase. The atomic size tend to decrease in same period of periodic table because the electrons are added with in the same shell. When the electron are added, at the same time protons are also added in the nucleus. The positive charge is going to increase and this charge is greater in effect than the charge of electrons. This effect lead to the greater nuclear attraction and reactivity increases because of greater electron affinity.
As we move down the group atomic radii increased with increase of atomic number. The addition of electron in next level cause the atomic radii to increased. The hold of nucleus on valance shell become weaker because of shielding of electrons thus size of atom increased. The electron affinity decreases because of shielding effect and thus atom become less reactive.
The final concentration of the diluted standard is 0.2 mg/dL.
<h3 /><h3>What is concentration of glucose standard after 1/5 solution?</h3>
Using the dilution formula:
where
- C1 is initial concentration
- V1 initial volume
- C2 is final concentration
- V2 is final volume.
Assuming a final volume of 100 mL, and since a 1/5 dilution is made:
C1 = 1.00 mg/dL
V1 = 20
C2 = ?
V2 = 100 mL
C2 = C1V1/V2
C2 = 20 × 1/100
C2 = 0.2 mg/dL
Therefore, the final concentration of the diluted standard is 0.2 mg/dL.
Learn more about dilution at: brainly.com/question/24881505
11- Form of energy that can be reflected or emitted from objects through electrical or magnetic waves.
12-Energy that is caused by moving electric charges.
13-Energy stored in the bonds of chemical compounds.
I only know those. Sorry hoped I helped a little! :)
Answer:
The boiling point increases with increased pressure up to the critical point, where the gas and liquid properties become identical.
Answer:
a.
![Keq=\frac{[HCO_3^-][OH^-]}{[CO_3^{2-}]}](https://tex.z-dn.net/?f=Keq%3D%5Cfrac%7B%5BHCO_3%5E-%5D%5BOH%5E-%5D%7D%7B%5BCO_3%5E%7B2-%7D%5D%7D)
b.
![Keq=[O_2]^3](https://tex.z-dn.net/?f=Keq%3D%5BO_2%5D%5E3)
c.
![Keq=\frac{[H_3O^+][F^-]}{[HF]}](https://tex.z-dn.net/?f=Keq%3D%5Cfrac%7B%5BH_3O%5E%2B%5D%5BF%5E-%5D%7D%7B%5BHF%5D%7D)
d.
![Keq=\frac{[NH_4^+][OH^-]}{[NH_3]}](https://tex.z-dn.net/?f=Keq%3D%5Cfrac%7B%5BNH_4%5E%2B%5D%5BOH%5E-%5D%7D%7B%5BNH_3%5D%7D)
Explanation:
Hello there!
In this case, for the attached reactions, it turns out possible for us to write the equilibrium expressions by knowing any liquid or solid would be not-included in the equilibrium expression as shown below, with the general form products/reactants:
a.
![Keq=\frac{[HCO_3^-][OH^-]}{[CO_3^{2-}]}](https://tex.z-dn.net/?f=Keq%3D%5Cfrac%7B%5BHCO_3%5E-%5D%5BOH%5E-%5D%7D%7B%5BCO_3%5E%7B2-%7D%5D%7D)
b.
![Keq=[O_2]^3](https://tex.z-dn.net/?f=Keq%3D%5BO_2%5D%5E3)
c.
![Keq=\frac{[H_3O^+][F^-]}{[HF]}](https://tex.z-dn.net/?f=Keq%3D%5Cfrac%7B%5BH_3O%5E%2B%5D%5BF%5E-%5D%7D%7B%5BHF%5D%7D)
d.
![Keq=\frac{[NH_4^+][OH^-]}{[NH_3]}](https://tex.z-dn.net/?f=Keq%3D%5Cfrac%7B%5BNH_4%5E%2B%5D%5BOH%5E-%5D%7D%7B%5BNH_3%5D%7D)
Regards!