The answer is a.n=1 because it makes sence
Answer:
The answer is 3
C2H5OH + O2 CO2 +H2O (unbalanced)
C2H5OH +3O2(g). 2CO2(g)+3H2O(balanced)
Gas I think if I’m wrong it’s solid and if that’s wrong it’s liquid please give me brainliest
Answer:
b. Second order in NO and first order in O₂.
Explanation:
A. The mechanism
![\rm 2NO\xrightarrow[k_{-1}]{k_{1}}N_{2}O_{2} \, (fast)\\\rm N_{2}O_{2} + O_{2}\xrightarrow{k_{2}} 2NO_{2} \, (slow)](https://tex.z-dn.net/?f=%5Crm%202NO%5Cxrightarrow%5Bk_%7B-1%7D%5D%7Bk_%7B1%7D%7DN_%7B2%7DO_%7B2%7D%20%5C%2C%20%28fast%29%5C%5C%5Crm%20N_%7B2%7DO_%7B2%7D%20%2B%20O_%7B2%7D%5Cxrightarrow%7Bk_%7B2%7D%7D%202NO_%7B2%7D%20%5C%2C%20%28slow%29)
B. The rate expressions
![-\dfrac{\text{d[NO]} }{\text{d}t} = k_{1}[\text{NO]}^{2} - k_{-1} [\text{N}_{2}\text{O}_{2}]^{2}\\\\\rm -\dfrac{\text{d[N$_{2}$O$_{2}$]}}{\text{d}t} = -\dfrac{\text{d[O$_{2}$]}}{\text{d}t} = k_{2}[ N_{2}O_{2}][O_{2}] - k_{1} [NO]^{2}\\\\\dfrac{\text{d[NO$_{2}$]}}{\text{d}t}= k_{2}[ N_{2}O_{2}][O_{2}]](https://tex.z-dn.net/?f=-%5Cdfrac%7B%5Ctext%7Bd%5BNO%5D%7D%20%7D%7B%5Ctext%7Bd%7Dt%7D%20%3D%20k_%7B1%7D%5B%5Ctext%7BNO%5D%7D%5E%7B2%7D%20-%20k_%7B-1%7D%20%5B%5Ctext%7BN%7D_%7B2%7D%5Ctext%7BO%7D_%7B2%7D%5D%5E%7B2%7D%5C%5C%5C%5C%5Crm%20-%5Cdfrac%7B%5Ctext%7Bd%5BN%24_%7B2%7D%24O%24_%7B2%7D%24%5D%7D%7D%7B%5Ctext%7Bd%7Dt%7D%20%3D%20-%5Cdfrac%7B%5Ctext%7Bd%5BO%24_%7B2%7D%24%5D%7D%7D%7B%5Ctext%7Bd%7Dt%7D%20%3D%20k_%7B2%7D%5B%20N_%7B2%7DO_%7B2%7D%5D%5BO_%7B2%7D%5D%20-%20k_%7B1%7D%20%5BNO%5D%5E%7B2%7D%5C%5C%5C%5C%5Cdfrac%7B%5Ctext%7Bd%5BNO%24_%7B2%7D%24%5D%7D%7D%7B%5Ctext%7Bd%7Dt%7D%3D%20k_%7B2%7D%5B%20N_%7B2%7DO_%7B2%7D%5D%5BO_%7B2%7D%5D)
The last expression is the rate law for the slow step. However, it contains the intermediate N₂O₂, so it can't be the final answer.
C. Assume the first step is an equilibrium
If the first step is an equilibrium, the rates of the forward and reverse reactions are equal. The equilibrium is only slightly perturbed by the slow leaking away of N₂O₂ to form product.
![\rm k_{1}[NO]^{2} = k_{-1} [N_{2}O_{2}]\\\\\rm [N_{2}O_{2}] = \dfrac{k_{1}}{k_{-1}}[NO]^{2}](https://tex.z-dn.net/?f=%5Crm%20k_%7B1%7D%5BNO%5D%5E%7B2%7D%20%3D%20k_%7B-1%7D%20%5BN_%7B2%7DO_%7B2%7D%5D%5C%5C%5C%5C%5Crm%20%5BN_%7B2%7DO_%7B2%7D%5D%20%3D%20%5Cdfrac%7Bk_%7B1%7D%7D%7Bk_%7B-1%7D%7D%5BNO%5D%5E%7B2%7D)
D. Substitute this concentration into the rate law
![\rm \dfrac{\text{d[NO$_{2}$]}}{\text{d}t}= \dfrac{k_{2}k_{1}}{k_{-1}}[NO]^{2} [O_{2}] = k[NO]^{2} [O_{2}]](https://tex.z-dn.net/?f=%5Crm%20%5Cdfrac%7B%5Ctext%7Bd%5BNO%24_%7B2%7D%24%5D%7D%7D%7B%5Ctext%7Bd%7Dt%7D%3D%20%5Cdfrac%7Bk_%7B2%7Dk_%7B1%7D%7D%7Bk_%7B-1%7D%7D%5BNO%5D%5E%7B2%7D%20%5BO_%7B2%7D%5D%20%3D%20k%5BNO%5D%5E%7B2%7D%20%5BO_%7B2%7D%5D)
The reaction is second order in NO and first order in O₂.
The coefficients in a balanced chemical equation are important because they give the ratio of the reactants and the products. Those ratios are fixed and when the reagents react do it in the same proportion and yield the products in the same proportion of the coefficients. Then, the coefficients are the basis for the calculations of the amount of substances that react and the amount of substances that are formed as result of the reaction.