It take 0.54 hours to deposit 6.36g of copper
<h3>Further explanation</h3>
Faraday's Law I
"The mass of the substance formed at each electrode is proportional to the electric current flowing in the electrolysis
W = e.i.t / 96500

e = equivalent = Ar / valence
i = current, A
t = time, s
W=6.36 g
e = 63.5 : 2 =31.75
i = 10 A

Explanation:
The given reaction equation will be as follows.
![[FeSCN^{2+}] \rightleftharpoons [Fe^{3+}] + [SCN^{-}]](https://tex.z-dn.net/?f=%5BFeSCN%5E%7B2%2B%7D%5D%20%5Crightleftharpoons%20%5BFe%5E%7B3%2B%7D%5D%20%2B%20%5BSCN%5E%7B-%7D%5D)
Let is assume that at equilibrium the concentrations of given species are as follows.
M
M
M
Now, first calculate the value of
as follows.
![K_{eq} = \frac{[Fe^{3+}][SCN^{-}]}{[FeSCN^{2+}]}](https://tex.z-dn.net/?f=K_%7Beq%7D%20%3D%20%5Cfrac%7B%5BFe%5E%7B3%2B%7D%5D%5BSCN%5E%7B-%7D%5D%7D%7B%5BFeSCN%5E%7B2%2B%7D%5D%7D)
= 
= 
Now, according to the concentration values at the re-established equilibrium the value for
will be calculated as follows.
![K_{eq} = \frac{[Fe^{3+}][SCN^{-}]}{[FeSCN^{2+}]}](https://tex.z-dn.net/?f=K_%7Beq%7D%20%3D%20%5Cfrac%7B%5BFe%5E%7B3%2B%7D%5D%5BSCN%5E%7B-%7D%5D%7D%7B%5BFeSCN%5E%7B2%2B%7D%5D%7D)
M
Thus, we can conclude that the concentration of
in the new equilibrium mixture is
M.
The transfer of energy that occurs when a force is applied over a distance is WORK.
Hope this helps!
I’m pretty sure it’s true
<span>The bonding found in calcium chloride is i</span>onic bonds.
I hope this helps!