Answer:
The heat of combustion is -25 kJ/g = -2700 kJ/mol.
Explanation:
According to the Law of conservation of energy, the sum of the heat released by the combustion reaction and the heat absorbed by the bomb calorimeter is equal to zero.
Qcomb + Qcal = 0
Qcomb = - Qcal
The heat absorbed by the calorimeter can be calculated with the following expression.
Qcal = C × ΔT
where,
C is the heat capacity of the calorimeter
ΔT is the change in temperature
Then,
Qcomb = - Qcal
Qcomb = - C × ΔT
Qcomb = - 1.56 kJ/°C × 3.2°C = -5.0 kJ
Since this is the heat released when 0.1964 g o quinone burns, the energy of combustion per gram is:

The molar mass of quinone (C₆H₄O₂) is 108 g/mol. Then, the energy of combustion per mole is:

Answer:
Hydrogen
Explanation:
It is considered a special element due to its flexibility in giving up & taking in electrons, therefore making it good for organic & inorganic chemistry. Hydrogen has only one proton and one electron and is the only element which has no neutrons. it is considered as the simplest element in the universe and gives a valid reason for it to be the most abundant and common element in the universe.
Hoped this helped! If this doesn't fit your 80 word count, you could shorten it.
<u>Answer:</u> The correct answer is Option C.
<u>Explanation:</u>
Net ionic equation of any reaction does not include any spectator ions.
Spectator ions are defined as the ions which does not get involved in a chemical equation. They are found on both the sides of the chemical reaction when it is present in ionic form.
The chemical equation for the reaction of sodium bicarbonate and acetic acid is given as:

Ionic form of the above equation follows:

As, sodium and acetate ions are present on both the sides of the reaction. Thus, it will not be present in the net ionic equation and are spectator ions.
The net ionic equation for the above reaction follows:

Hence, the correct answer is Option C.
Density that is determined by a balance between gravity and pressure