Grinding as it’s a physical not chemical change :)
From Grahams Law the rates of effusion of two gases are inversely proportional to the square roots of their molar masses at the same temperature and pressure.
Therefore; R1/R2 = √mm2/√mm1
The molecular mass of Carbon dioxide is 44 g
Hence; 1.8 = √(44/x
3.24 = 44/x
x = 44/3.24
= 13.58
Therefore, the molar mass of the other gas is 13.58 g/mol
All I know us the San Andreas fault line. That earthquake is far overdo
<span>The mass and volume of each sample differ from the mass and volume of the other samples. Is it possible for each sample to contain 1 mol of each substance?
</span><span>C) Yes, because the number of moles is not dependent on the mass or the volume.</span>
Answer:
A
-1440J
Explanation:
Hello,
This question requires us to calculate the work done on a object to move it from point A to point B
Data
Mass = 60kg
Initial velocity (V1) = 8.0m/s
Final velocity (V2) = 4.0m/s
Workdone on an object is equal to force applied on the object to move it through a particular distance.
Work done = force × distance
Force (F) = mass × acceleration
Distance = s
F = Ma
Work done = M× a × s
But a = velocity (v) / time (t)
Work done = mvs / t
But velocity = distance/ time
Work done = mv × v/
Work done = mv²
Work done = ½mv²
Workdone = ½M(V2² - V1²)
Workdone = ½ × 60 (4² - 8²)
Work done = 30 × (16 - 64)
Workdone = 30 × (-48)
Work done = -1440J
Work done = -1.44kJ
The workdone on the object is equal to -1.44kJ