The complete balanced chemical reaction is written as:
AgNO3 + KCl ---> AgCl
+ KNO3
where AgCl is our
precipitate
So calculating for moles
of AgCl produced: MM AgCl = 143.5 g/mol
moles AgCl = 0.326 g /
(143.5 g/mol) = 2.27 x 10^-3 mol
we see that there is 1
mole of Ag per 1 mole of AgCl so:
moles Ag = 2.27 x 10^-3
mol
The molarity is simply
the ratio of number of moles over volume in Liters, therefore:
Molarity = 2.27 x 10^-3
mol / 0.0977 L
<span>Molarity = 0.0233 M</span>
After 25 days, it remains radon 5.9x10^5 atoms.
Half-life is the time required for a quantity (in this example number of radioactive radon) to reduce to half its initial value.
N(Ra) = 5.7×10^7; initial number of radon atoms
t1/2(Ra) = 3.8 days; the half-life of the radon is 3.8 days
n = 25 days / 3.8 days
n = 6.58; number of half-lifes of radon
N1(Ra) = N(Ra) x (1/2)^n
N1(Ra) = 5.7×10^7 x (1/2)^6.58
N1(Ra) = 5.9x10^5; number of radon atoms after 25 days
The half-life is independent of initial concentration (size of the sample).
More about half-life: brainly.com/question/1160651
#SPJ4
In three hours and twenty minutes from 1:40 will be 5:00
At STP one mol weighs 22.4L
Moles of O_2
1 mol.O_2 can create 2mol water
moles of water
Volume of water
Answer:
X= -Y + 2/2 Y=-X + 3/2
Explanation:
I don't know how to simplify it anymore. You would get x=-y+3/2 and y=-x+3/2