Here we have to write a simple equation which describes the action of the enzyme catalase.
The equation is: The concentration of the complex [ES] = ![\frac{[E]0}{1+\frac{Km}{[S]} }](https://tex.z-dn.net/?f=%5Cfrac%7B%5BE%5D0%7D%7B1%2B%5Cfrac%7BKm%7D%7B%5BS%5D%7D%20%7D)
Let us consider an enzyme catalyses reaction E + S ⇄ ES → E + P
Where E, S, ES and P are enzyme, substrate, complex and product respectively.
The concentration of the complex [ES] =
, where
is the Michaelis constant.
[E]₀ and [S] is the initial concentration of enzyme and concentration of substrate respectively.
Answer:
The forward reaction is exothermic.
Explanation:
- Le Châtelier's principle states that when there is an dynamic equilibrium, and this equilibrium is disturbed by an external factor, the equilibrium will be shifted in the direction that can cancel the effect of the external factor to reattain the equilibrium.
- When the mixture turned darker brown, this means that the reaction is shifted towards the left direction (reactants side).
- The temperature is increased and the reaction shifted to the reverse direction, this means that the forward direction is exothermic.
- Exothermic reaction releases heat and when increasing the temperature, the reaction will be shifted to the reverse direction to suppress the effect of increasing the temperature.
- <em>So the right choice is: The forward reaction is exothermic. </em>
<em></em>
<span>The molecular formula for phosphoric acid is H3PO4 and has 97.994 grams per mol. In a sample of 658 grams of phosphoric acid, there are 6.71 mols of phosphoric acid.</span>