Responder:
1/12
Explicación paso a paso:
Entonces multiplicamos 9 por 3 y obtenemos 27.
Luego multiplicamos 2 por 12 y obtenemos 24.
A continuación, le damos a ambos términos nuevos denominadores: 12 × 3 = 36.
Así que ahora nuestras fracciones se ven así:
27
36
-
24
36
Paso 2
Dado que nuestros denominadores coinciden, podemos restar los numeradores.
27 - 24 = 3
Entonces la respuesta es:
3
36
Paso 3
Por último, necesitamos simplificar la fracción, si es posible. ¿Se puede reducir a una fracción más simple?
Para averiguarlo, intentamos dividirlo por 2 ...
¡No! Así que ahora probamos con el siguiente número primo mayor, 3 ...
¿Son tanto el numerador como el denominador divisibles por 3? ¡Sí! Entonces lo reducimos:
3
36
÷ 3 =
<u>1/12 </u>
Answer:
<h2><u>E</u><u>k</u>sponent</h2>
![\sf{ \large{ \boxed{ \red{ {a}^{ \frac{n}{m} } = \sqrt[m]{ {a}^{n} } } } }}](https://tex.z-dn.net/?f=%20%20%5Csf%7B%20%5Clarge%7B%20%5Cboxed%7B%20%5Cred%7B%20%7Ba%7D%5E%7B%20%5Cfrac%7Bn%7D%7Bm%7D%20%20%7D%20%20%3D%20%20%5Csqrt%5Bm%5D%7B%20%7Ba%7D%5E%7Bn%7D%20%7D%20%7D%20%7D%20%7D%7D)

![= \sqrt[3]{ {2}^{4} }](https://tex.z-dn.net/?f=%20%3D%20%20%5Csqrt%5B3%5D%7B%20%7B2%7D%5E%7B4%7D%20%7D%20)
![= \sqrt[3]{2 \times 2 \times 2 \times 2}](https://tex.z-dn.net/?f=%20%3D%20%20%20%5Csqrt%5B3%5D%7B2%20%5Ctimes%202%20%5Ctimes%202%20%5Ctimes%202%7D%20)
![= \boxed {\bold{\sqrt[3]{16}(c.) }}](https://tex.z-dn.net/?f=%20%3D%20%20%20%5Cboxed%20%20%7B%5Cbold%7B%5Csqrt%5B3%5D%7B16%7D%28c.%29%20%7D%7D)
All you have to do is multiply 4 × 6 to get your answer. So, 4 × 6 = 24, and considering we can't leave the variable out, we have to put it with our answer. Our answer is then 24x. Hint: Parentheses mean multiplication.
Explanation:
This can be explained by thinking numbers on the number line as:
Lets take we have to multiply a positive number (say, 2) with a negative number say (-3)
<u>2×(-3)</u>
Suppose someone is standing at 0 on the number line and to go to cover -3 , the person moves 3 units in the left hand side. Since, we have to compute for 2×(-3), The person has to cover the same distance twice. At last, he will be standing at -6, which is a negative number.
A image is shown below to represent the same.
<u>Thus, a positive times a negative is a negative number.</u>
This problem can be completed in 2 ways. Both are acceptable.
Option 1:This is an isosceles trapezoid that can be divided into a rectangle and two congruent triangles.
The area of the rectangle is the base times the height.

The area of one of the triangles is half the base times the height.

The other triangle must have that area too.

The area is 56 square centimeters.
Option 2:We can use the area formula for the trapezoid.

Where

is the length of the shorter base
and

is the length of the longer base
and

is the height.
The length of the shorter base is 9.
The length of the longer base is 9+5+5, or 19.
The height is 4.


Same answer. The area is 56 square centimeters.
Both options are two acceptable ways the problem can be tackled.