Answer:
Below.
Step-by-step explanation:
To find the answer, you have to compare the two equations:
and 
So first, the graph looks different because the two slopes are different. The first one will be more vertical than the second one.
The second difference is the y - intercepts. The first equation starts at (0, 60) and the second starts at the origin.
The <em><u>correct answer</u></em> is:
22.5° F.
Explanation:
The temperature increases 1.5° per hour. From 5:00 AM to 12:00 PM is 12-5 = 7 hours. This makes an increase of 1.5(7) = 10.5°.
The temperature started at 12°F; increasing by 10.5° gives us
12+10.5 = 22.5°F.
Answer:
400
Step-by-step explanation:
Answer:
Port r is 100° from Port p and 26km from Port p
Step-by-step explanation:
Lets note the dimension.
From p to q = 15 km = a
From q to r = 20 km= b
Angle at q = 50° + 45°
Angle at q = 95°
Ley the unknown distance be x
Distance from p to r is the unknown.
The formula to be applied is
X²= a²+ b² - 2abcosx
X²= 15² + 20² - 2(15)(20)cos95
X²= 225+400-(-52.29)
X²= 677.29
X= 26.02
X is approximately 26 km
To know it's direction from p
20/sin p = 26/sin 95
Sin p= 20/26 * sin 95
Sin p = 0.7663
P= 50°
So port r is (50+50)° from Port p
And 26 km far from p
Answer:
2 hours, 150 miles
Step-by-step explanation:
The relation between time, speed, and distance can be used to solve this problem. It can work well to consider just the distance between the drivers, and the speed at which that is changing.
<h3>Separation distance</h3>
Jason got a head start of 20 miles, so that is the initial separation between the two drivers.
<h3>Closure speed</h3>
Jason is driving 10 mph faster than Britton, so is closing the initial separation gap at that rate.
<h3>Closure time</h3>
The relevant relation is ...
time = distance/speed
Then the time it takes to reduce the separation distance to zero is ...
closure time = separation distance / closure speed = 20 mi / (10 mi/h)
closure time = 2 h
Britton will catch up to Jason after 2 hours. In that time, Britton will have driven (2 h)(75 mi/h) = 150 miles.
__
<em>Additional comment</em>
The attached graph shows the distance driven as a function of time from when Britton started. The distances will be equal after 2 hours, meaning the drivers are in the same place, 150 miles from their starting spot.