Answer:
41.74 m/s
Explanation:
The energy used to draw the bowstring = the kinetic energy of the arrow.
Fd = 1/2mv²................................ Equation 1
Where F = force, d = distance move string, m = mass of the arrow, v = speed of the arrow.
make v the subject of the equation
v = √(2Fd/m)...................... Equation 2
Given: F = 201 N, m = 0.3 kg, d = 1.3 m.
Substitute into equation 2
v = √(2×201×1.3/0.3)
v = √(1742)
v = 41.74 m/s.
Hence the arrow leave the bow with a speed of 41.74 m/s
The mass would be the same
47kg on the moon as well
Answer: A.The ocean is colder than the land
Explanation:
Based on the information provided in the question, we are informed that Agustin visits Panama City, Florida, during the month of May and that he feels a shore breeze blowing from the ocean onto the beach.
The reason for the shore breeze is simply due to the fact that the ocean is colder than the land. Since the ocean is colder, anyone who goes to the beach will feel the breeze.
Answer:
The fundamental frequency of can is 2.7 kHz.
Explanation:
Given that,
A typical length for the auditory canal in an adult is about 3.1 cm, l = 3.1 cm
The speed of sound is, v = 336 m/s
We need to find the fundamental frequency of the canal. For a tube open at only one end, the fundamental frequency is given by :

So, the fundamental frequency of can is 2.7 kHz. Hence, this is the required solution.
Answer:
A
Explanation:
Kinetic energy is the energy of motion
KE=.5mv^2
>m= mass
>v= velocity (m/s)
PE=mgh
>m= mass
>g= acceleration due to graviry
>h= height