False. Velocity is a vector and is measured in m/s (in SI, anyway).
Answer: 2561.7 pounds
Explanation:
If we assume the total weight of an airplane (in pounds units) as a <u>linear function</u> of the amount of fuel in its tank (in gallons) and we make a Weight vs amount of fuel graph, which resulting slope is 5.7, we can use the slope equation of the line:
(1)
Where:
is the slope of the line
is the airplane weight with 51 gallons of fuel in its tank (assuming we chose the Y axis for the airplane weight in the graph)
is the fuel in airplane's tank for a total weigth of 2390.7 pounds (assuming we chose the X axis for the a,ount of fuel in the tank in the graph)
This means we already have one point of the graph, which coordinate is:

Rewritting (1):
(2)
As Y is a function of X:
(3)
Substituting the known values:
(4)
(5)
(6)
Now, evaluating this function when X=81 (talking about the 81 gallons of fuel in the tank):
(7)
(8) This means the weight of the plane when it has 81 gallons of fuel in its tank is 2561.7 pounds.
Answer:
x = 129.9 m
y = 30.9 m
Explanation:
When an object is thrown into the air under the effect of the gravitational force, the movement of the projectile is observed. Then it can be considered as two separate motions, horizontal motion and vertical motion. Both motions are different, so that they can be handled independently.
Given data:
= 50 m/s
Angle = 30°
Time = t = 3 s
horizontal component of velocity =
=
cos30°
= 50cos30°
= 43.3 m/s
Vertical component of velocity =
=
Sin30°
= 50Sin30°
= 25 m/s
This is a projectile motion, and we know that in projectile motion the horizontal component of the velocity remain constant throughout his motion. So there is no acceleration along horizontal path.
But the vertical component of velocity varies with time and there is an acceleration along vertical direction which is equal to gravitational acceleration g.
Horizontal distance = x =
t
x = 43.3*3
x = 129.9 m
Vertical Distance = y =
t -0.5gt²
y = 25*3 - 0.5*9.8*3²
y = 75 - 44.1
y = 30.9 m
Answer:
Atomic mass is the weighted average mass of an atom of an element based on the relative natural abundance of that element's isotopes. The mass number is a count of the total number of protons and neutrons in an atom's nucleus.