1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
o-na [289]
2 years ago
6

An astronomical unit (A.U.) is 1 point A) a term for defining the luminosity of a star B) the average distance from the Earth to

the sun C) the average distance of any given planet to the sun D) equal to a light year
Physics
1 answer:
Elenna [48]2 years ago
7 0

Answer:

B) the average distance from the Earth to the Sun

Explanation:

You might be interested in
True or False? Energy is matter.<br><br> 1. False<br><br> 2. True
andriy [413]

Answer:

False because it has no mass.

Explanation:

7 0
2 years ago
HELPPPPP WILL GIVE BRAINLIEST!!!
Lady bird [3.3K]

Answer:

3.round object that orbits the Sun but lacks the ability to clear the neighborhood around its orbit.

Explanation:

in 2006 the IAU, said that a dwarf planet is round object that has not cleared the area round a object and that is why Pluto, Ceres, and Eris are dwarf planet.

7 0
3 years ago
Read 2 more answers
A fireworks rocket is fired vertically upward. At its maximum height of 90.0 m , it explodes and breaks into two pieces, one wit
Alex73 [517]

Answer:

Ai. Speed of the fragment with mass mA= 1.35 kg is 34.64 m/s

Aii. Speed of the fragment with mass mB = 0.270 kg is 77.46 m/s

B. 475.3 m

Explanation:

A. Determination of the speed of each fragment.

I. Determination of the speed of the fragment with mass mA = 1.35 kg

Mass of fragment (m₁) = 1.35 kg

Kinetic energy (KE) = 810 J

Velocity of fragment (u₁) =?

KE = ½m₁u₁²

810 = ½ × 1.35 × u₁²

810 = 0.675 × u₁²

Divide both side by 0.675

u₁² = 810 / 0.675

u₁² = 1200

Take the square root of both side.

u₁ = √1200

u₁ = 34.64 m/s

Therefore, the speed of the fragment with mass mA = 1.35 kg is 34.64 m/s

II. I. Determination of the speed of the fragment with mass mB = 0.270 kg

Mass of fragment (m₂) = 0.270 kg

Kinetic energy (KE) = 810 J

Velocity of fragment (u₂) =?

KE = ½m₂u₂²

810 = ½ × 0.270 × u₂²

810 = 0.135 × u₂²

Divide both side by 0.135

u₂² = 810 / 0.135

u₂² = 6000

Take the square root of both side.

u₂ = √6000

u₂ = 77.46 m/s

Therefore, the speed of the fragment with mass mB = 0.270 kg is 77.46 m/s

B. Determination of the distance between the points on the ground where they land.

We'll begin by calculating the time taken for the fragments to get to the ground. This can be obtained as follow:

Maximum height (h) = 90.0 m

Acceleration due to gravity (g) = 10 m/s²

Time (t) =?

h = ½gt²

90 = ½ × 10 × t²

90 = 5 × t²

Divide both side by 5

t² = 90/5

t² = 18

Take the square root of both side

t = √18

t = 4.24 s

Thus, it will take 4.24 s for each fragments to get to the ground.

Next, we shall determine the horizontal distance travelled by the fragment with mass mA = 1.35 kg. This is illustrated below:

Velocity of fragment (u₁) = 34.64 m/s

Time (t) = 4.24 s

Horizontal distance travelled by the fragment (s₁) =?

s₁ = u₁t

s₁ = 34.64 × 4.24

s₁ = 146.87 m

Next, we shall determine the horizontal distance travelled by the fragment with mass mB = 0.270 kg. This is illustrated below:

Velocity of fragment (u₂) = 77.46 m/s

Time (t) = 4.24 s

Horizontal distance travelled by the fragment (s₂) =?

s₂ = u₂t

s₂ = 77.46 × 4.24

s₂ = 328.43 m

Finally, we shall determine the distance between the points on the ground where they land.

Horizontal distance travelled by the 1st fragment (s₁) = 146.87 m

Horizontal distance travelled by the 2nd fragment (s₂) = 328.43 m

Distance apart (S) =?

S = s₁ + s₂

S = 146.87 + 328.43

S = 475.3 m

Therefore, the distance between the points on the ground where they land is 475.3 m

3 0
3 years ago
A stationary siren creates an 894 Hz
valentina_108 [34]

Answer:

12.3 m/s

Explanation:

The Doppler equation describes how sound frequency depends on relative velocities:

fr = fs (c + vr)/(c + vs),

where fr is the frequency heard by the receiver,

fs is the frequency emitted at the source,

c is the speed of sound,

vr is the velocity of the receiver,

and vs is the velocity of the source.

Note: vr is positive if the receiver is moving towards the source, negative if away.

Conversely, vs is positive if the receiver is moving away from the source, and negative if towards.

Given:

fs = 894 Hz

fr = 926 Hz

c = 343 m/s

vs = 0 m/s

Find: vr

926 = 894 (343 + vr) / (343 + 0)

vr = 12.3

The speed of the car is 12.3 m/s.

5 0
3 years ago
The theoretical line perpindicular to the surface where a light ray hits a mirror is called the
valkas [14]
That's called the "normal" to the surface at that point.
3 0
3 years ago
Other questions:
  • Two forces a 60 newton force east and an 80 newton force north
    9·1 answer
  • Please help ! will mark brainliest &lt; 3
    8·1 answer
  • A cast iron paperweight is in the shape of a half-sphere with a diameter of 8.2cm. The cast iron has a density of 7.3g/cm^3. Wha
    10·1 answer
  • Why don't you hear a sound when you move your hand back and fourth through the air
    8·2 answers
  • Cousin Throckmorton is playing with the clothesline. One end of the clothesline is attached to a vertical post. Throcky holds th
    6·1 answer
  • A box weighs 2000N and is accelerated uniformly over a horizontal surface at a rate of 8 m/s^2. The opposing force of friction b
    14·1 answer
  • Write three example for types of energy​
    6·2 answers
  • Which compound is composed of oppositely charged ions
    7·1 answer
  • Sound wave of a wave length of 0.56 meters if its speed is 280 m/s what is the wave frequency
    5·1 answer
  • An fm radio station broadcasts at a frequency of 101. 3 mhz. What is the wavelength?.
    9·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!